Phycobilisomes from blue-green and red algae: isolation criteria and dissociation characteristics
- PMID: 16660778
- PMCID: PMC542883
- DOI: 10.1104/pp.63.4.615
Phycobilisomes from blue-green and red algae: isolation criteria and dissociation characteristics
Abstract
A general procedure for the isolation of functionally intact phycobilisomes was devised, based on modifications of previously used procedures. It has been successful with numerous species of red and blue-green algae (Anabaena variabilis, Anacystis nidulans, Agmenellum quadruplicatum, Fremyella diplosiphon, Glaucosphaera vacuolata, Griffithsia pacifica, Nemalion multifidum, Nostoc sp., Phormidium persicinum, Porphyridium cruentum, P. sordidum, P. aerugineum, Rhodosorus marinus). Isolation was carried out in 0.75 molar K-phosphate (pH 6.8 to 7.0) at 20 to 23 C on sucrose step gradients. Lower temperature (4 to 10 C) was usually unfavorable resulting in uncoupling of energy transfer and partial dissociation of the phycobilisomes, sometimes with complete loss of allophycocyanin. Intact phycobilisomes were characterized by fluorescence emission peaks of 670 to 675 nanometers at room temperature, and 678 to 685 nanometers at liquid nitrogen temperature. Uncoupling and subsequent dissociation of phycobilisomes, in lowered ionic conditions, varied with the species and the degree of dissociation but occurred preferentially between phycocyanin and allophycocyanin, or between phycocyanin and phycoerythrin.
Similar articles
-
Formation of hybrid phycobilisomes by association of phycobiliproteins from Nostoc and Fremyella.Proc Natl Acad Sci U S A. 1982 Sep;79(17):5277-81. doi: 10.1073/pnas.79.17.5277. Proc Natl Acad Sci U S A. 1982. PMID: 16593223 Free PMC article.
-
Further evidence for a phycobilisome model from selective dissociation, fluorescence emission, immunoprecipitation, and electron microscopy.Biochim Biophys Acta. 1976 May 14;430(2):375-88. doi: 10.1016/0005-2728(76)90093-1. Biochim Biophys Acta. 1976. PMID: 1276188
-
Cyanobacterial phycobilisomes: Selective dissociation monitored by fluorescence and circular dichroism.Proc Natl Acad Sci U S A. 1980 Apr;77(4):1961-5. doi: 10.1073/pnas.77.4.1961. Proc Natl Acad Sci U S A. 1980. PMID: 16592802 Free PMC article.
-
Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitat.Arch Microbiol. 2001 Dec;176(6):400-5. doi: 10.1007/s002030100346. Epub 2001 Sep 27. Arch Microbiol. 2001. PMID: 11734882 Review.
-
The structure of a "simple" phycobilisome.Ann Microbiol (Paris). 1983 Jul-Aug;134B(1):159-80. doi: 10.1016/s0769-2609(83)80103-3. Ann Microbiol (Paris). 1983. PMID: 6416125 Review.
Cited by
-
Characterization of cyanobacterial phycobilisomes in zwitterionic detergents.Proc Natl Acad Sci U S A. 1979 Dec;76(12):6162-6. doi: 10.1073/pnas.76.12.6162. Proc Natl Acad Sci U S A. 1979. PMID: 16592734 Free PMC article.
-
A Highly Active Oxygen-Evolving Photosystem II Preparation from the Cyanobacterium Anacystis nidulans.Plant Physiol. 1984 Mar;74(3):742-5. doi: 10.1104/pp.74.3.742. Plant Physiol. 1984. PMID: 16663492 Free PMC article.
-
Large scale preparation of pure phycobiliproteins.Photosynth Res. 1987 Jan;11(3):225-35. doi: 10.1007/BF00055062. Photosynth Res. 1987. PMID: 24435538
-
Effects of proteinase K on the energy transfer between phycobiliproteins in phycobilisomes.Photosynth Res. 1985 Jan;7(1):91-6. doi: 10.1007/BF00032925. Photosynth Res. 1985. PMID: 24443016
-
Disruption of a gene encoding a novel thioredoxin-like protein alters the cyanobacterial photosynthetic apparatus.J Bacteriol. 1995 Jun;177(11):3269-76. doi: 10.1128/jb.177.11.3269-3276.1995. J Bacteriol. 1995. PMID: 7768827 Free PMC article.
References
LinkOut - more resources
Full Text Sources
Other Literature Sources