Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 May;63(5):878-81.
doi: 10.1104/pp.63.5.878.

Role of Potassium in Carbon Dioxide Assimilation in Medicago sativa L

Affiliations

Role of Potassium in Carbon Dioxide Assimilation in Medicago sativa L

T R Peoples et al. Plant Physiol. 1979 May.

Abstract

Alfalfa was grown hydroponically in 0, 0.6, and 4.8 millimolar K in order to determine the influence of tissue level of K on photosynthesis, dark respiration, photorespiration, stomatal and mesophyll resistance to CO(2), photosystem I and II activity, and synthesis and activity of ribulose 1,5-bisphosphate carboxylase (RuBPc).A severe (0.0 millimolar) and mild (0.6 millimolar) K deficiency, compared to plants grown at 4.8 millimolar K, produced a significant decrease in photosynthesis and photorespiration, but an increase in dark respiration. Both deficient K levels increased hydrophyllic resistance to CO(2), but only the severe deficiency increased stomatal resistance.Photosystem I and II activity of isolated chloroplasts was not affected by K deficiency. The apparent activity of a crude RuBPc preparation was significantly reduced in severely deficient plants. Activity of the enzyme could not be restored to normal rates by the addition of K to the reaction medium.The specific activity of RuBPc isolated from severely K-deficient and K-sufficient leaflets was not significantly different, suggesting that K does not function in RuBPc activity. Incorporation of [(14)C]leucine into RuBPc, as a measure of synthesis, by K-deficient leaflets was reduced to 15% of K-sufficient leaflets. The addition of K to the reaction medium stimulated [(14)C]leucine incorporation into RuBPc and 10 millimolar KNO(3) increased incorporation to 80% of K-sufficient leaflets. Actinomycin D and cycloheximide suppressed the K-stimulated incorporation of [(14)C]leucine into RuBPc, suggesting that the K-stimulated synthesis of RuBPc most likely represents de novo synthesis.

PubMed Disclaimer

References

    1. Plant Physiol. 1978 Mar;61(3):472-3 - PubMed
    1. Plant Physiol. 1972 Sep;50(3):410-1 - PubMed
    1. Plant Physiol. 1973 Jun;51(6):1099-101 - PubMed
    1. Plant Physiol. 1950 Jul;25(3):394-412 - PubMed
    1. Methods Enzymol. 1972;24:146-65 - PubMed

LinkOut - more resources