Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Aug;68(2):329-34.
doi: 10.1104/pp.68.2.329.

Impairment of photosynthesis by chilling-temperatures in tomato

Affiliations

Impairment of photosynthesis by chilling-temperatures in tomato

B Martin et al. Plant Physiol. 1981 Aug.

Abstract

Chilling of attached tomato leaves (cv. Rutgers) in the dark for 16 hours at 1 C decreased both photosynthesis and transpiration. To separate the effects of chilling on stomatal CO(2) conductance from more direct effects of chilling on the chloroplasts' activities, measurements of photosynthesis and transpiration were made at atmospheric and saturating CO(2) levels. At atmospheric CO(2), the inhibition of photosynthesis was approximately 60%, of which about 35% was attributable to the impairment of chloroplast function and about 25% was attributable to decreased stomatal conductance. However, the affinity of the photosynthetic apparatus for CO(2) was not changed by chilling, since the dependence of the relative rate of photosynthesis on the intercellular CO(2) concentration was unaltered. The apparent quantum requirement for CO(2) reduction also was identical in chilled and unchilled plants. This observation contradicts the widely held notion that the chilling-induced inhibition of photosynthesis is caused by an impairment of the water oxidation mechanism. The impairment of chloroplast activity was not a consequence of an unfavorable water status within the leaf, since chilling caused only a small drop (1 bar) in water potential. A small loss of chlorophyll resulted as a secondary effect of chilling, but this loss of chlorophyll was eliminated as a cause of the inhibition of photosynthesis.No recovery of chloroplast activity occurred during the subsequent light period after chilling. The recovery seemed to be inhibited by light or to require both a light period and a dark period or to occur after a considerable lag period. After a period of both light and dark, restoration of stomatal conductance occurred more slowly than did the recovery of chloroplast activity.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1044-51 - PubMed
    1. Plant Physiol. 1972 Nov;50(5):572-5 - PubMed
    1. Biochim Biophys Acta. 1972 Apr 20;267(1):96-103 - PubMed
    1. Science. 1970 Apr 24;168(3930):494-6 - PubMed
    1. Biochim Biophys Acta. 1980 Jan 4;589(1):84-99 - PubMed

LinkOut - more resources