Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Jan;71(1):71-5.
doi: 10.1104/pp.71.1.71.

Relationships between Photosynthetically Active Radiation, Nocturnal Acid Accumulation, and CO(2) Uptake for a Crassulacean Acid Metabolism Plant, Opuntia ficus-indica

Affiliations

Relationships between Photosynthetically Active Radiation, Nocturnal Acid Accumulation, and CO(2) Uptake for a Crassulacean Acid Metabolism Plant, Opuntia ficus-indica

P S Nobel et al. Plant Physiol. 1983 Jan.

Abstract

The influences of photosynthetically active radiation (PAR) and water status on nocturnal Crassulacean acid metabolism (CAM) were quantitatively examined for a widely cultivated cactus, Opuntia ficus-indica (L.) Miller. When the total daily PAR was maintained at 10 moles photons per square meter per day but the instantaneous PAR level varied, the rate of nocturnal H(+) accumulation (tissue acidification) became 90% saturated near 700 micromoles per square meter per second, a PAR level typical for similar light saturation of C(3) photosynthesis. The total nocturnal H(+) accumulation and CO(2) uptake reached 90% of maximum for a total daily PAR of about 22 moles per square meter per day. Light compensation occurred near 0 moles per square meter per day for nocturnal H(+) accumulation and 4 moles per square meter per day for CO(2) uptake. Above a total daily PAR of 36 moles per square meter per day or for an instantaneous PAR of 1150 micromoles per square meter per second for more than 6 hours, the nocturnal H(+) accumulation actually decreased. This inhibition, which occurred at PAR levels just above those occurring in the field, was accompanied by a substantial decrease in chlorophyll content over a 1-week period.A minimum ratio of H(+) accumulated to CO(2) taken up of 2.5 averaged over the night occurred for a total daily PAR of 31 moles per square meter per day under wet conditions. About 2 to 6 hours into the night under such conditions, a minimum H(+)-to-CO(2) ratio of 2.0 was observed. Under progressively drier conditions, both nocturnal H(+) accumulation and CO(2) uptake decreased, but the H(+)-to-CO(2) ratio increased. A ratio of two H(+) per CO(2) is consistent with the H(+) production accompanying the conversion of starch to malic acid, and it apparently occurs for O. ficus-indica when CAM CO(2) uptake is strongly favored over respiratory activity.

PubMed Disclaimer

References

    1. Science. 1963 Oct 4;142(3588):15-23 - PubMed
    1. Plant Physiol. 1974 Jul;54(1):76-81 - PubMed
    1. Plant Physiol. 1980 Sep;66(3):463-5 - PubMed
    1. Plant Physiol. 1980 Jun;65(6):1181-7 - PubMed
    1. Plant Physiol. 1973 Dec;52(6):539-41 - PubMed

LinkOut - more resources