Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Sep;73(1):125-9.
doi: 10.1104/pp.73.1.125.

Purification and characterization of a soybean leaf storage glycoprotein

Affiliations

Purification and characterization of a soybean leaf storage glycoprotein

V A Wittenbach. Plant Physiol. 1983 Sep.

Abstract

Removing the pods from soybean (Glycine max [L.] Merr. cv Wye) plants induces a change in leaf function which is characterized by a change in the leaf soluble protein pattern. The synthesis of at least four polypeptides ( approximately 27, 29, 54, and 80 kilodaltons) is enhanced, and these polypeptides accumulate to levels comprising over 50% of the soluble protein. Heat girdling the petiole also causes the accumulation of these polypeptides, suggesting that the signal for changing leaf function may be associated with inhibition of phloem transport. The 27 and 29 kilodalton polypeptides are glycosylated and have been purified to greater than 90% by (NH(4))(2)SO(4) fractionation, concanavilin A affinity, and gel filtration chromatography. These peptides appear to comprise a single protein. Mouse antiserum has been prepared against this glycoprotein and has been used to check for cross-reactivity with seed proteins and to quantitate changes with leaf development. No cross-reactivity was observed with seed soluble proteins from several stages of development. Quantitation showed the highest content in podded plants at, and shortly following, flowering, with levels subsequently declining in conjunction with seed growth. In depodded plants, the level of glycoprotein continued to increase following flowering and accounted for 45% of the soluble leaf protein by 4 weeks after depodding.

PubMed Disclaimer

References

    1. Immunochemistry. 1965 Sep;2(3):235-54 - PubMed
    1. Plant Physiol. 1982 Nov;70(5):1544-8 - PubMed
    1. Plant Physiol. 1978 Mar;61(3):394-7 - PubMed
    1. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350-4 - PubMed
    1. Plant Physiol. 1983 Jun;72(2):586-9 - PubMed

LinkOut - more resources