Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Dec;69(12):1833-40.
doi: 10.1139/y91-271.

Myocardial calcium cycling defect in furazolidone cardiomyopathy

Affiliations

Myocardial calcium cycling defect in furazolidone cardiomyopathy

P J O'Brien et al. Can J Physiol Pharmacol. 1991 Dec.

Abstract

We have previously demonstrated that in furazolidone-induced congestive heart failure in turkeys the specific Ca(2+)-ATPase activity of myocardial sarcoplasmic reticulum (SR) is 60% increased in compensation for a 50% depression in net Ca(2+)-sequestration activity. This study tested the hypothesis that SR Ca(2+)-uptake and Ca(2+)-ATPase activities were uncoupled in this cardiomyopathy because of increased Ca(2+)-release channel activity. A novel microassay was used to monitor Ca2+ transport by myocardial homogenates using the fluorescent Ca2+ dye indo 1 to indicate extravesicular ionized Ca2+. The method is applied to cyropreserved biopsy specimens of myocardium and requires only 50 mg tissue. Both SR Ca(2+)-pump and SR Ca(2+)-channel activity were estimated using the channel-inhibitor ruthenium red (RR) and the mitochondrial inhibitor sodium azide. The specificity of the RR inhibition was confirmed using ryanodine. Cardiomyopathy was induced in 2-week-old turkey poults by the addition of 0.07% furazolidone to their feed for 4 weeks. Compared with controls, myocardial maximal Ca(2+)-channel activity relative to maximal Ca(2+)-pump activity was 22% greater and duration of Ca(2+)-channel activity was 100% increased. However, the heart failure birds had 43 and 53% decreases in absolute maximal Ca(2+)-pumping and Ca(2+)-channel activities, respectively. The abnormal Ca(2+)-channel activity resulted in 200% greater time before initiation of net Ca2+ sequestration and 700% greater final myocardial Ca2+ concentrations. For all birds, the Ca(2+)-accumulating activity was highly correlated with Ca(2+)-release activity (all p less than 0.05). These data indicate that in this animal model of congestive heart failure there is defective SR Ca(2+)-channel function resulting in abnormal Ca2+ homeostasis.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources