Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Dec;73(4):921-8.
doi: 10.1104/pp.73.4.921.

Separation of two types of electrogenic h-pumping ATPases from oat roots

Affiliations

Separation of two types of electrogenic h-pumping ATPases from oat roots

K A Churchill et al. Plant Physiol. 1983 Dec.

Abstract

Microsomal vesicles of oat roots (Avena sativa var Lang) were separated with a linear dextran (0.5-10%, w/w) or sucrose (25-45%, w/w) gradient to determine the types and membrane identity of proton-pumping ATPases associated with plant membranes. ATPase activity stimulated by the H(+)/K(+) exchange ionophore nigericin exhibited two peaks of activity on a linear dextran gradient. ATPase activities or ATP-generated membrane potential (inside positive), monitored by SCN(-) distribution, included a vanadate-insensitive and a vanadate-sensitive component. In a previous communication, we reported that ATP-dependent pH gradient formation (acid inside), monitored by quinacrine fluorescence quenching, was also partially inhibited by vanadate (Churchill and Sze 1983 Plant Physiol 71: 610-617). Here we show that the vanadate-insensitive, electrogenic ATPase activity was enriched in the low density vesicles (1-4% dextran or 25-32% sucrose) while the vanadate-sensitive activity was enriched at 4% to 7% dextran or 32% to 37% sucrose. The low-density ATPase was stimulated by Cl(-) and inhibited by NO(-) (3) or 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid (DIDS). The distribution of Cl(-)-stimulated ATPase activity in a linear dextran gradient correlated with the distribution of H(+) pumping into vesicles as monitored by [(14)C]methylamine accumulation. The vanadate-inhibited ATPase was mostly insensitive to anions or DIDS and stimulated by K(+). These results show that microsomal vesicles of plant tissues have at least two types of electrogenic, proton-pumping ATPases. The vanadate-insensitive and Cl(-)-stimulated, H(+)-pumping ATPase may be enriched in vacuolar-type membranes; the H(+)-pumping ATPase that is stimulated by K(+) and inhibited by vanadate is most likely associated with plasma membrane-type vesicles.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Plant Physiol. 1982 Oct;70(4):1115-9 - PubMed
    1. Biochim Biophys Acta. 1978 Sep 29;515(3):239-302 - PubMed
    1. Plant Physiol. 1982 Dec;70(6):1743-7 - PubMed
    1. Plant Physiol. 1982 Nov;70(5):1327-34 - PubMed
    1. Plant Physiol. 1982 Nov;70(5):1335-40 - PubMed

LinkOut - more resources