Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Aug;75(4):1099-103.
doi: 10.1104/pp.75.4.1099.

Effect of ammonium on nitrate utilization by roots of dwarf bean

Affiliations

Effect of ammonium on nitrate utilization by roots of dwarf bean

H Breteler et al. Plant Physiol. 1984 Aug.

Abstract

The effect of exogenous NH(4) (+) on NO(3) (-) uptake and in vivo NO(3) (-) reductase activity (NRA) in roots of Phaseolus vulgaris L. cv Witte Krombek was studied before, during, and after the apparent induction of root NRA and NO(3) (-) uptake. Pretreatment with NH(4)Cl (0.15-50 millimolar) affected neither the time pattern nor the steady state rate of NO(3) (-) uptake.When NH(4) (+) was given at the start of NO(3) (-) nutrition, the time pattern of NO(3) (-) uptake was the same as in plants receiving no NH(4) (+). After 6 hours, however, the NO(3) (-) uptake rate (NUR) and root NRA were inhibited by NH(4) (+) to a maximum of 45% and 60%, respectively.The response of the NUR of NO(3) (-)-induced plants depended on the NH(4)Cl concentration. Below 1 millimolar NH(4) (+), the NUR declined immediately and some restoration occurred in the second hour. In the third hour, the NUR became constant. In contrast, NH(4) (+) at 2 millimolar and above caused a rapid and transient stimulation of NO(3) (-) uptake, followed again by a decrease in the first, a recovery in the second, and a steady state in the third hour. Maximal inhibition of steady state NUR was 50%. With NO(3) (-)-induced plants, root NRA responded less and more slowly to NH(4) (+) than did NUR.Methionine sulfoximine and azaserine, inhibitors of glutamine synthetase and glutamate synthase, respectively, relieved the NH(4) (+) inhibition of the NUR of NO(3) (-)-induced plants. We conclude that repression of the NUR by NH(4) (+) depends on NH(4) (+) assimilation. The repression by NH(4) (+) was least at the lowest and highest NH(4) (+) levels tested (0.04 and 25 millimolar).

PubMed Disclaimer

Similar articles

Cited by

References

    1. Arch Microbiol. 1981 Apr;129(2):135-40 - PubMed
    1. Plant Physiol. 1982 Sep;70(3):754-9 - PubMed
    1. Plant Physiol. 1982 Feb;69(2):353-9 - PubMed
    1. Biochim Biophys Acta. 1971 Feb 23;230(2):362-72 - PubMed
    1. Plant Physiol. 1983 Mar;71(3):496-501 - PubMed

LinkOut - more resources