Light Intensity Adaptation and Phycobilisome Composition of Microcystis aeruginosa
- PMID: 16664557
- PMCID: PMC1075011
- DOI: 10.1104/pp.79.4.983
Light Intensity Adaptation and Phycobilisome Composition of Microcystis aeruginosa
Abstract
Phycobilisomes isolated from Microcystis aeruginosa grown to midlog at high light (270 microeinsteins per square meter per second) or at low light intensities (40 microeinsteins per square meter per second) were found to be identical. Electron micrographs established that they have a triangular central core apparently consisting of three allophycocyanin trimers surrounded by six rods, each composed of two hexameric phycocyanin molecules. The apparent mass of a phycobilisome obtained by gel filtration is 2.96 x 10(6) daltons. The molar ratio of the phycobiliproteins per phycobilisome is 12 phycocyanin hexamers:9 allophycocyanin trimers. The electron microscopic observations combined with the phycobilisome apparent mass and the phycobiliprotein stoichiometry data indicate that M. aeruginosa phycobilisomes are composed of a triangular central core of three stacks of three allophycocyanin trimers and six rods each containing two phycocyanin hexamers. Adaptation of M. aeruginosa to high light intensity results in a decrease in the number of phycobilisomes per cell with no alteration in phycobilisome composition or structure.
Similar articles
-
Regulation of phycobilisome structure and gene expression by light intensity.Plant Physiol. 1992 Mar;98(3):1003-10. doi: 10.1104/pp.98.3.1003. Plant Physiol. 1992. PMID: 16668720 Free PMC article.
-
Isolation, characterization and electron microscopy analysis of a hemidiscoidal phycobilisome type from the cyanobacterium Anabaena sp. PCC 7120.Eur J Biochem. 1996 Mar 15;236(3):1010-24. doi: 10.1111/j.1432-1033.1996.01010.x. Eur J Biochem. 1996. PMID: 8665889
-
Molecular architecture of a light-harvesting antenna. Isolation and characterization of phycobilisome subassembly particles.J Biol Chem. 1982 Apr 25;257(8):4077-86. J Biol Chem. 1982. PMID: 6802826
-
The structure of a "simple" phycobilisome.Ann Microbiol (Paris). 1983 Jul-Aug;134B(1):159-80. doi: 10.1016/s0769-2609(83)80103-3. Ann Microbiol (Paris). 1983. PMID: 6416125 Review.
-
Phycobiliproteins from extreme environments and their potential applications.J Exp Bot. 2020 Jun 26;71(13):3827-3842. doi: 10.1093/jxb/eraa139. J Exp Bot. 2020. PMID: 32188986 Review.
Cited by
-
Structural and compositional analyses of the phycobilisomes of Synechococcus sp. PCC 7002. Analyses of the wild-type strain and a phycocyanin-less mutant constructed by interposon mutagenesis.Arch Microbiol. 1990;153(6):550-60. doi: 10.1007/BF00245264. Arch Microbiol. 1990. PMID: 2164365
-
Evidence for a Transient Association of New Proteins with the Spirulina maxima Phycobilisome in Relation to Light Intensity.Plant Physiol. 1994 Oct;106(2):747-754. doi: 10.1104/pp.106.2.747. Plant Physiol. 1994. PMID: 12232367 Free PMC article.
-
Photoregulation of gene expression in the filamentous cyanobacterium Calothrix sp. PCC 7601: light-harvesting complexes and cell differentiation.Photosynth Res. 1988 Oct;18(1-2):99-132. doi: 10.1007/BF00042981. Photosynth Res. 1988. PMID: 24425162
-
Cyanobacterial Acclimation to Photosystem I or Photosystem II Light.Plant Physiol. 1986 Sep;82(1):185-9. doi: 10.1104/pp.82.1.185. Plant Physiol. 1986. PMID: 16664989 Free PMC article.
-
Trimeric photosystem I facilitates energy transfer from phycobilisomes in Synechocystis sp. PCC 6803.Plant Physiol. 2022 Jun 1;189(2):827-838. doi: 10.1093/plphys/kiac130. Plant Physiol. 2022. PMID: 35302607 Free PMC article.
References
LinkOut - more resources
Full Text Sources