Biosynthesis of the fucose-containing xyloglucan nonasaccharide by pea microsomal membranes
- PMID: 16665037
- PMCID: PMC1056126
- DOI: 10.1104/pp.82.2.379
Biosynthesis of the fucose-containing xyloglucan nonasaccharide by pea microsomal membranes
Abstract
Pea microsomal membranes catalyze the transfer of [(14)C]fucose (Fuc) from GDP-[U-(14)C]fucose, with or without added unlabeled UDP-glucose (Glc), UDP-xylose (Xyl) or UDP-galactose (Gal), to an insoluble product with properties characteristic of xyloglucan. After digestion of the ethanol-insoluble pellet with Streptomyces griseus endocellulase, [(14)C] fucose residues occur exclusively in a fragment corresponding in size to the xyloglucan nonasaccharide, Glc(4) Xyl(3) Gal Fuc. This fragment contains a single labeled fucose residue per oligomer, alpha-linked in a terminal nonreducing position. By comparison, in incubations where GDP-[(14)C] fucose is absent and replaced by UDP-[(3)H]xylose, the maximum size of labeled oligosaccharide found following cellulase digestion of products is an octasaccharide. In the presence of both GDP-[(14)C]fucose and UDP-[(3)H]xylose, a nonasaccharide containing the two labels is produced. Fucose and xylose residues are transferred within a few minutes to acceptor molecules of molecular weight up to 300,000. Such products do not elongate detectably over 60 minutes of incubation. The data support the conclusion that the nonasaccharide subunit of xyloglucan may be generated in vitro by transfucosylation to preformed acceptor chains, and that its synthesis is dependent on the inclusion of exogenous GDP-fucose.
Similar articles
-
Fucosylation of exogenous xyloglucans by pea microsomal membranes.Arch Biochem Biophys. 1988 Jul;264(1):48-53. doi: 10.1016/0003-9861(88)90568-1. Arch Biochem Biophys. 1988. PMID: 3134858
-
Acceptor requirements for GDP-fucose:xyloglucan 1,2-alpha-L-fucosyltransferase activity solubilized from pea epicotyl membranes.Arch Biochem Biophys. 1992 Apr;294(1):200-5. doi: 10.1016/0003-9861(92)90158-s. Arch Biochem Biophys. 1992. PMID: 1550346
-
Incorporation of UDP-[C]Glucose into Xyloglucan by Pea Membranes.Plant Physiol. 1989 Sep;91(1):373-8. doi: 10.1104/pp.91.1.373. Plant Physiol. 1989. PMID: 16667028 Free PMC article.
-
An Arabidopsis gene encoding an alpha-xylosyltransferase involved in xyloglucan biosynthesis.Proc Natl Acad Sci U S A. 2002 May 28;99(11):7797-802. doi: 10.1073/pnas.102644799. Proc Natl Acad Sci U S A. 2002. PMID: 12032363 Free PMC article.
-
Oligosaccharins from xyloglucan and cellulose: modulators of the action of auxin and H+ on plant growth.Symp Soc Exp Biol. 1990;44:285-98. Symp Soc Exp Biol. 1990. PMID: 2130516 Review.
Cited by
-
Changes in molecular size of previously deposited and newly synthesized pea cell wall matrix polysaccharides : effects of auxin and turgor.Plant Physiol. 1992 Jan;98(1):369-79. doi: 10.1104/pp.98.1.369. Plant Physiol. 1992. PMID: 16668638 Free PMC article.
-
Functional compartmentation of the Golgi apparatus of plant cells : immunocytochemical analysis of high-pressure frozen- and freeze-substituted sycamore maple suspension culture cells.Plant Physiol. 1992 Jul;99(3):1070-83. doi: 10.1104/pp.99.3.1070. Plant Physiol. 1992. PMID: 16668973 Free PMC article.
-
The maize mixed-linkage (1->3),(1->4)-beta-D-glucan polysaccharide is synthesized at the golgi membrane.Plant Physiol. 2010 Jul;153(3):1362-71. doi: 10.1104/pp.110.156158. Epub 2010 May 20. Plant Physiol. 2010. PMID: 20488897 Free PMC article.
-
Spatial organization of the assembly pathways of glycoproteins and complex polysaccharides in the Golgi apparatus of plants.J Cell Biol. 1991 Feb;112(4):589-602. doi: 10.1083/jcb.112.4.589. J Cell Biol. 1991. PMID: 1993733 Free PMC article.
-
Macromolecular differentiation of Golgi stacks in root tips of Arabidopsis and Nicotiana seedlings as visualized in high pressure frozen and freeze-substituted samples.Protoplasma. 1990;157(1-3):75-91. doi: 10.1007/BF01322640. Protoplasma. 1990. PMID: 11537090
References
LinkOut - more resources
Full Text Sources