Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Sep;85(1):277-82.
doi: 10.1104/pp.85.1.277.

Banana Ripening: Implications of Changes in Internal Ethylene and CO(2) Concentrations, Pulp Fructose 2,6-Bisphosphate Concentration, and Activity of Some Glycolytic Enzymes

Affiliations

Banana Ripening: Implications of Changes in Internal Ethylene and CO(2) Concentrations, Pulp Fructose 2,6-Bisphosphate Concentration, and Activity of Some Glycolytic Enzymes

R M Beaudry et al. Plant Physiol. 1987 Sep.

Abstract

In ripening banana (Musa acuminata L. [AAA group, Cavandish subgroup] cv. Valery) fruit, the steady state concentration of the glycolytic regulator fructose 2,6-bisphosphate (Fru 2,6-P(2)) underwent a transient increase 2 to 3 hours before the respiratory rise, but coincident with the increase in ethylene synthesis. Fru 2,6-P(2) concentration subsequently decreased, but increased again approximately one day after initiation of the respiratory climacteric. This second rise in Fru 2,6-P(2) continued as ripening proceeded, reaching approximately five times preclimacteric concentration. Pyrophosphate-dependent phosphofructokinase glycolytic activity exhibited a transitory rise during the early stages of the respiratory climacteric, then declined slightly with further ripening. Cytosolic fructose 1,6-bisphosphatase activity did not change appreciably during ripening. The activity of ATP-dependent phosphofructokinase increased approximately 1.6-fold concurrent with the respiratory rise. A balance in the simultaneous glycolytic and gluconeogenic carbon flow in ripening banana fruit appears to be maintained through changes in substrate levels, relative activities of glycolytic enzymes and steady state levels of Fru 2,6-P(2).

PubMed Disclaimer

References

    1. Plant Physiol. 1985 Dec;79(4):1133-6 - PubMed
    1. J Ultrastruct Res. 1965 Dec;13(5):543-59 - PubMed
    1. Plant Physiol. 1986 Jan;80(1):246-8 - PubMed
    1. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5051-5 - PubMed
    1. Science. 1964 Nov 13;146(3646):880-8 - PubMed

LinkOut - more resources