Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Oct;88(2):389-95.
doi: 10.1104/pp.88.2.389.

The Conversion of Nitrite to Nitrogen Oxide(s) by the Constitutive NAD(P)H-Nitrate Reductase Enzyme from Soybean

Affiliations

The Conversion of Nitrite to Nitrogen Oxide(s) by the Constitutive NAD(P)H-Nitrate Reductase Enzyme from Soybean

J V Dean et al. Plant Physiol. 1988 Oct.

Abstract

A two-step purification protocol was used in an attempt to separate the constitutive NAD(P)H-nitrate reductase [NAD(P)H-NR, pH 6.5; EC 1.6.6.2] activity from the nitric oxide and nitrogen dioxide (NO((x))) evolution activity extracted from soybean (Glycine max [L.] Merr.) leaflets. Both of these activities were eluted with NADPH from Blue Sepharose columns loaded with extracts from either wild-type or LNR-5 and LNR-6 (lack constitutive NADH-NR [pH 6.5]) mutant soybean plants regardless of nutrient growth conditions. Fast protein liquid chromatography-anion exchange (Mono Q column) chromatography following Blue Sepharose affinity chromatography was also unable to separate the two activities. These data provide strong evidence that the constitutive NAD(P)H-NR (pH 6.5) in soybean is the enzyme responsible for NO((x)) formation. The Blue Sepharose-purified soybean enzyme has a pH optimum of 6.75, an apparent K(m) for nitrite of 0.49 millimolar, and an apparent K(m) for NADPH and NADH of 7.2 and 7.4 micromolar, respectively, for the NO((x)) evolution activity. In addition to NAD(P)H, reduced flavin mononucleotide (FMNH(2)) and reduced methyl viologen (MV) can serve as electron donors for NO((x)) evolution activity. The NADPH-, FMNH(2)-, and reduced MV-NO((x)) evolution activities were all inhibited by cyanide. The NADPH activity was also inhibited by p-hydroxymer-curibenzoate, whereas, the FMNH(2) and MV activities were relatively insensitive to inhibition. These data indicate that the terminal molybdenum-containing portion of the enzyme is involved in the reduction of nitrite to NO((x)). NADPH eluted both NR and NO((x)) evolution activities from Blue Sepharose columns loaded with extracts of either nitrate- or zero N-grown winged bean (Psophocarpus tetragonolobus [L.]), whereas NADH did not elute either type of activity. Winged bean appears to contain only one type of NR enzyme that is similar to the constitutive NAD(P)H-NR (pH 6.5) enzyme of soybean.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Plant Physiol. 1986 Jun;81(2):593-6 - PubMed
    1. Plant Physiol. 1985 May;78(1):80-4 - PubMed
    1. Anal Biochem. 1976 May 7;72:248-54 - PubMed
    1. J Biochem. 1972 Apr;71(4):645-52 - PubMed
    1. Biochim Biophys Acta. 1963 Mar 12;67:379-93 - PubMed

LinkOut - more resources