Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Nov;91(3):876-82.
doi: 10.1104/pp.91.3.876.

Culm strength of barley : correlation among maximum bending stress, cell wall dimensions, and cellulose content

Affiliations

Culm strength of barley : correlation among maximum bending stress, cell wall dimensions, and cellulose content

A Kokubo et al. Plant Physiol. 1989 Nov.

Abstract

Grass culms are known to differ in breaking strength, but there is little physicochemical data to explain the response. The fourth internode of four brittle and two nonbrittle barley (Hordeum vulgare L.) strains were used for physical and chemical studies of culm strength. Inner and outer culm diameters of brittle strains (3.6 +/- 0.2 and 5.0 +/- 0.1 millimeters) were not significantly different from those of nonbrittle strains (3.9 +/- 0.2 and 5.2 +/- 0.2 millimeters). Maximum bending stress, at which the culm was broken, was 192 +/- 34 g/mm(2) for brittle and 490 +/- 38 g/mm(2) for nonbrittle strains. Wall thickness and cell dimensions of epidermal, sclerenchyma, and parenchyma cells were measured in culm cross sections. The area of cell wall per unit cell area for each tissue was significantly correlated with the maximum bending stress (r = 0.93 for epidermis, 0.90 for sclerenchyma, and 0.84 for parenchyma). Cell walls of brittle culms had 6 to 64% as much cellulose content as those of nonbrittle culms. Maximum bending stress correlated significantly with cellulose content of the cell walls (r = 0.93), but not with the contents of noncellulosic compounds. The lower cellulose content of the brittle culm was significantly correlated with brittleness.

PubMed Disclaimer

References

    1. Plant Physiol. 1938 Jul;13(3):587-98 - PubMed
    1. Science. 1985 Nov 15;230(4727):822-5 - PubMed

LinkOut - more resources