Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Nov;91(3):930-8.
doi: 10.1104/pp.91.3.930.

Effects of cold-treatment on protein synthesis and mRNA levels in rice leaves

Affiliations

Effects of cold-treatment on protein synthesis and mRNA levels in rice leaves

M Hahn et al. Plant Physiol. 1989 Nov.

Abstract

The effects of cold on protein and RNA metabolism in leaves of rice (Oryza sativa L.) seedlings were investigated. Treatment with a diurnal cycle of 15/10 degrees C or 11/6 degrees C for up to 1 week resulted in progressive changes in the protein synthesis pattern after in vivo labeling of intact rice leaves with [(35)S]methionine. These changes were reversed when the seedlings were returned to normal growth temperatures. While de novo accumulation of several abundant proteins was suppressed, some polypeptides were consistently found to be cold-induced. Synthesis of ribulose 1,5-bisphosphate carboxylase (Rubisco) was drastically reduced after 7 days of cold. Using immunoprecipitation of Rubisco, evidence was obtained that the suppression was greater for the small subunit (over 90%) than for the large subunit (80%), indicating a partial loss of coordination in their synthesis. Preformed Rubisco as well as other cold-suppressed proteins were stable for up to 7 days at 11/6 degrees C. Cold-sensitive rice cultivars responded with similar but more drastic changes in the protein synthesis pattern when compared to cold-tolerant varieties. The suppression of Rubisco synthesis by cold was shown to result from reduced levels of the mRNAs encoding both subunits; their decrease paralleled the lower protein synthesis of each. The levels of other chloroplast-encoded mRNAs, especially psaB, and of the nuclear encoded chlorophyll a/b binding protein, also strongly decreased in the cold, whereas the transcripts of the mitochondrial genes apt9, coxIII, and most nuclear genes analyzed were unaffected or only slightly reduced. These data indicate that some chloroplast functions are disturbed during cold stress. One nuclear gene known to be induced by water stress and ABA (Rab21) was also found to be induced by cold treatment.

PubMed Disclaimer

References

    1. Mol Gen Genet. 1986 Dec;205(3):461-8 - PubMed
    1. Plant Physiol. 1989 Jan;89(1):375-80 - PubMed
    1. Genetics. 1986 Aug;113(4):1009-19 - PubMed
    1. Plant Physiol. 1987 Jul;84(3):872-8 - PubMed
    1. Plant Physiol. 1985 May;78(1):155-62 - PubMed

LinkOut - more resources