Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Feb;92(2):440-6.
doi: 10.1104/pp.92.2.440.

Stress Responses in Alfalfa (Medicago sativa L.): I. Induction of Phenylpropanoid Biosynthesis and Hydrolytic Enzymes in Elicitor-Treated Cell Suspension Cultures

Affiliations

Stress Responses in Alfalfa (Medicago sativa L.): I. Induction of Phenylpropanoid Biosynthesis and Hydrolytic Enzymes in Elicitor-Treated Cell Suspension Cultures

K Dalkin et al. Plant Physiol. 1990 Feb.

Abstract

Alfalfa (Medicago sativa L.) cell suspension cultures accumulated high concentrations of the pterocarpan phytoalexin medicarpin, reaching a maximum within 24 hours after exposure to an elicitor preparation from cell walls of the phytopathogenic fungus Colletotrichum lindemuthianum. This was preceded by increases in the extractable activities of the isoflavonoid biosynthetic enzymes l-phenylalanine ammonia-lyase, cinnamic acid 4-hydroxylase, 4-coumarate coenzyme A-ligase, chalcone synthase, chalcone isomerase, and isoflavone O-methyltransferase. Pectic polysaccharides were weak elicitors of phenylalanine ammonia-lyase activity but did not induce medicarpin accumulation, whereas reduced glutathione was totally inactive as an elicitor in this system. The fungal cell wall extract was a weak elicitor of the lignin biosynthetic enzymes, caffeic acid O-methyltransferase and coniferyl alcohol dehydrogenase, but did not induce appreciable increases in the activities of the hydrolytic enzymes chitinase and 1,3-beta-d-glucanase. The results are discussed in relation to the activation of isoflavonoid biosynthesis in other legumes and the development of the alfalfa cell culture system as a model for studying the enzymology and molecular biology of plant defense expression.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Eur J Biochem. 1974 Dec 16;50(1):135-43 - PubMed
    1. Eur J Biochem. 1985 May 2;148(3):563-9 - PubMed
    1. Eur J Biochem. 1976 Jan 2;61(1):199-206 - PubMed
    1. Eur J Biochem. 1985 May 2;148(3):571-8 - PubMed
    1. Plant Physiol. 1988 May;87(1):206-10 - PubMed

LinkOut - more resources