Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Mar;92(3):615-21.
doi: 10.1104/pp.92.3.615.

Purification and Characterization of Pea Epicotyl beta-Amylase

Affiliations

Purification and Characterization of Pea Epicotyl beta-Amylase

P A Lizotte et al. Plant Physiol. 1990 Mar.

Abstract

The most abundant beta-amylase (EC 3.2.1.2) in pea (Pisum sativum L.) was purified greater than 880-fold from epicotyls of etiolated germinating seedlings by anion exchange and gel filtration chromatography, glycogen precipitation, and preparative electrophoresis. The electrophoretic mobility and relative abundance of this beta-amylase are the same as that of an exoamylase previously reported to be primarily vacuolar. The enzyme was determined to be a beta-amylase by end product analysis and by its inability to hydrolyze beta-limit dextrin and to release dye from starch azure. Pea beta-amylase is an approximate 55 to 57 kilodalton monomer with a pl of 4.35, a pH optimum of 6.0 (soluble starch substrate), an Arrhenius energy of activation of 6.28 kilocalories per mole, and a K(m) of 1.67 milligrams per milliliter (soluble starch). The enzyme is strongly inhibited by heavy metals, p-chloromer-curiphenylsulfonic acid and N-ethylmaleimide, but much less strongly by iodoacetamide and iodoacetic acid, indicating cysteinyl sulfhydryls are not directly involved in catalysis. Pea beta-amylase is competitively inhibited by its end product, maltose, with a K(i) of 11.5 millimolar. The enzyme is partially inhibited by Schardinger maltodextrins, with alpha-cyclohexaamylose being a stronger inhibitor than beta-cycloheptaamylose. Moderately branched glucans (e.g. amylopectin) were better substrates for pea beta-amylase than less branched or non-branched (amyloses) or highly branched (glycogens) glucans. The enzyme failed to hydrolyze native starch grains from pea and glucans smaller than maltotetraose. The mechanism of pea beta-amylase is the multichain type. Possible roles of pea beta-amylase in cellular glucan metabolism are discussed.

PubMed Disclaimer

References

    1. Plant Physiol. 1984 May;75(1):278-80 - PubMed
    1. Plant Physiol. 1979 Nov;64(5):833-6 - PubMed
    1. Anal Biochem. 1981 Nov 1;117(2):307-10 - PubMed
    1. Biochem J. 1988 Sep 15;254(3):835-40 - PubMed
    1. Plant Physiol. 1982 May;69(5):1096-102 - PubMed

LinkOut - more resources