Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Oct;94(2):752-9.
doi: 10.1104/pp.94.2.752.

Effect of Nitrogen Starvation on Polypeptide Composition, Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase, and Thylakoid Carotenoprotein Content of Synechocystis sp. Strain PCC6308

Affiliations

Effect of Nitrogen Starvation on Polypeptide Composition, Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase, and Thylakoid Carotenoprotein Content of Synechocystis sp. Strain PCC6308

C S Duke et al. Plant Physiol. 1990 Oct.

Abstract

Synechocystis sp. strain PCC6308 cells were starved for nitrogen for 5 days. The polypeptide compositions of whole cell extracts and washed membranes of nitrogen-replete and nitrogen-starved cells were compared by one- and two-dimensional electrophoresis. Immunoblotting of one-dimensional gels indicated that pelletable ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was depleted in cells starved for nitrogen, while levels of soluble Rubisco were comparable in nitrogen-starved and nitrogen-replete cells. This is consistent with the hypothesis that pelletable Rubisco may serve as a nitrogen reserve in Synechocystis 6308. Other polypeptides were differentially enriched in the membrane or soluble fractions of nitrogen-replete cells or nitrogen-starved cells, suggesting nitrogen starvation may alter partitioning of polypeptides into soluble and membrane fractions. Degradation of abundant polypeptides during nitrogen starvation appeared to cause an effective magnification of less abundant polypeptides in the molecular mass range of 20 to 40 kilodaltons, as shown by two-dimensional electrophoresis. A 42-kilodalton thylakoid carotenoid protein identified by immunoblotting was conserved in membranes from nitrogen-starved cells. This may be functional for cells depleted of pigment and thus exposed to higher light levels because of decreased self-shading.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Bacteriol. 1986 Nov;168(2):486-93 - PubMed
    1. J Biol Chem. 1975 May 25;250(10):4007-21 - PubMed
    1. Anal Biochem. 1977 Dec;83(2):346-56 - PubMed
    1. Arch Biochem Biophys. 1981 Apr 15;208(1):184-8 - PubMed
    1. J Bacteriol. 1985 Mar;161(3):1125-30 - PubMed

LinkOut - more resources