Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Dec;94(4):1561-7.
doi: 10.1104/pp.94.4.1561.

Extra- and Intracellular pH and Membrane Potential Changes Induced by K, Cl, H(2)PO(4), and NO(3) Uptake and Fusicoccin in Root Hairs of Limnobium stoloniferum

Affiliations

Extra- and Intracellular pH and Membrane Potential Changes Induced by K, Cl, H(2)PO(4), and NO(3) Uptake and Fusicoccin in Root Hairs of Limnobium stoloniferum

C I Ullrich et al. Plant Physiol. 1990 Dec.

Abstract

Short-term ion uptake into roots of Limnobium stoloniferum was followed extracellularly with ion selective macroelectrodes. Cytosolic or vacuolar pH, together with the electrical membrane potential, was recorded with microelectrodes both located in the same young root hair. At the onset of chloride, phosphate, and nitrate uptake the membrane potential transiently decreased by 50 to 100 millivolts. During Cl(-) and H(2)PO(4) (-) uptake cytosolic pH decreased by 0.2 to 0.3 pH units. Nitrate induced cytosolic alkalinization by 0.19 pH units, indicating rapid reduction. The extracellular medium alkalinized when anion uptake exceeded K(+) uptake. During fusicoccin-dependent plasmalemma hyperpolarization, extracellular and cytosolic pH remained rather constant. Upon K(+) absorption, FC intensified extracellular acidification and intracellular alkalinization (from 0.31 to 0.4 pH units). In the presence of Cl(-) FC induced intracellular acidification. Since H(+) fluxes per se do not change the pH, recorded pH changes only result from fluxes of the stronger ions. The extra- and intracellular pH changes, together with membrane depolarization, exclude mechanisms as K(+)/A(-) symport or HCO(3) (-)/A(-) antiport for anion uptake. Though not suitable to reveal the actual H(+)/A(-) stoichiometry, the results are consistent with an H(+)/A(-) cotransport mechanism.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Plant Physiol. 1974 Jul;54(1):82-7 - PubMed
    1. Plant Physiol. 1978 Jun;61(6):933-7 - PubMed
    1. Can J Physiol Pharmacol. 1983 Dec;61(12):1444-61 - PubMed
    1. Plant Physiol. 1967 Jan;42(1):6-14 - PubMed
    1. Plant Physiol. 1989 Aug;90(4):1532-7 - PubMed

LinkOut - more resources