Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Oct;97(2):537-44.
doi: 10.1104/pp.97.2.537.

Fe-Chelate Reductase Activity of Plasma Membranes Isolated from Tomato (Lycopersicon esculentum Mill.) Roots : Comparison of Enzymes from Fe-Deficient and Fe-Sufficient Roots

Affiliations

Fe-Chelate Reductase Activity of Plasma Membranes Isolated from Tomato (Lycopersicon esculentum Mill.) Roots : Comparison of Enzymes from Fe-Deficient and Fe-Sufficient Roots

M J Holden et al. Plant Physiol. 1991 Oct.

Abstract

Reduction of Fe(3+) to Fe(2+) is a prerequisite for Fe uptake by tomato roots. Ferric chelate reductase activity in plasma membranes (PM) isolated from roots of both iron-sufficient (+Fe) and iron-deficient (-Fe) tomatoes (Lycopersicon esculentum Mill.) was measured as NADH-dependent ferric citrate reductase and exhibited simple Michaelis-Menten kinetics for the substrates, NADH and Fe(3+)(citrate(3-))(2). NADH and Fe(3+)(citrate(3-))(2)K(m) values for reductase in PM from +Fe and -Fe tomato roots were similar, whereas V(max) values were two- to threefold higher for reductase from -Fe tomatoes. The pH optimum for Fe-chelate reductase was 6.5. Fe-chelate reductases from -Fe and +Fe tomato roots were equally sensitive to several triazine dyes. Reductase was solubilized with n-octyl beta-d-glucopyranoside and electrophoresed in nondenaturing isoelectric focusing gels. Three bands, with isoelectric points of 5.5 to 6.2, were resolved by enzyme activity staining of electrofocused PM proteins isolated from +Fe and -Fe tomato roots. Activity staining was particularly enhanced in the isoelectric point 5.5 and 6.2 bands solubilized from -Fe PM. We conclude that PM from roots of +Fe and -Fe plants contain Fe-chelate reductases with similar characteristics. The response to iron deficiency stress likely involves increased expression of constitutive Fe-chelate reductase isoforms in expanding epidermal root PM.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Plant Physiol. 1987 Nov;85(3):693-8 - PubMed
    1. Proc Natl Acad Sci U S A. 1976 Feb;73(2):361-5 - PubMed
    1. Plant Physiol. 1989 May;90(1):151-6 - PubMed
    1. Biochim Biophys Acta. 1990 Jan 29;1021(2):133-40 - PubMed
    1. Anal Biochem. 1976 Jan;70(1):241-50 - PubMed

LinkOut - more resources