Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Dec;97(4):1375-80.
doi: 10.1104/pp.97.4.1375.

Nitrogen metabolism in the stalk tissue of maize

Affiliations

Nitrogen metabolism in the stalk tissue of maize

C T Ta. Plant Physiol. 1991 Dec.

Abstract

During ear development in maize (Zea mays L.), nitrogenous compounds are translocated from vegetative organs to the kernels. At anthesis, the stalk contains approximately 40% of the total plant N, and contributes 45% of the N remobilized to the ear. Therefore, the stalk has an important function as a temporary reservoir for N. Little is known of the metabolism of maize stalks, and this paper describes initial studies of enzymes of N metabolism. High in vitro activity of glutamine synthetase (GS) in maize stalk samples throughout ear development contrasted with a peak in activity of glutamate synthase soon after anthesis and negligible nitrate reductase. With fresh sections of stalk tissue collected at anthesis, (15)N-feeding experiments confirmed high GS and low nitrate reductase activities. Two isoforms of GS were separated from extracts from stalk tissue: GS1, the cytoplasmic form, increased to maximum levels at 2 weeks postanthesis and remained fairly high thereafter; whereas the plastidic form, GS2, declined progressively during kernel development. Western blot analysis confirmed the presence of constantly high levels of GS protein after anthesis. The levels of GS proteins decreased after transfer of N-starved, hydroponically grown plants to N-rich conditions in order to restrict remobilization of N. In contrast, transfer of plants grown under abundant N conditions to N-free medium, which encourages N remobilization, resulted in a relative increase in GS protein. Because glutamine is the major form of N transported in maize, the results indicate that GS, specifically the GS1 isoform, has a central role in the remobilization on nitrogenous compounds from the stalk to the ear.

PubMed Disclaimer

References

    1. Plant Physiol. 1981 Nov;68(5):1186-90 - PubMed
    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Anal Biochem. 1976 May 7;72:248-54 - PubMed
    1. Anal Biochem. 1986 May 1;154(2):564-9 - PubMed
    1. Plant Physiol. 1990 Oct;94(2):657-64 - PubMed

LinkOut - more resources