Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Dec;97(4):1430-4.
doi: 10.1104/pp.97.4.1430.

Heat Shock Proteins in Two Lines of Zea mays L. That Differ in Drought and Heat Resistance

Affiliations

Heat Shock Proteins in Two Lines of Zea mays L. That Differ in Drought and Heat Resistance

Z Ristic et al. Plant Physiol. 1991 Dec.

Abstract

Synthesis of heat shock proteins (HSPs) in the leaves of a drought- and heat-resistant (line ZPBL 1304), and a drought- and heat-sensitive (line ZPL 389) line of maize (Zea mays L.) was studied under two environmental stress treatments: (a) soil drying and high temperature and (b) high temperature. In the first treatment 13-day-old plants were exposed to 7-day soil drying followed by high temperature stress (45 degrees C), and in the second treatment 20-day-old plants were exposed to high temperature stress (45 degrees C). Second leaves were labeled with [(35)S]methionine. During the labeling period line ZPBL 1304 showed no signs of leaf dehydration under soil drying and high temperature stress conditions. In contrast, line ZPL 389 was dehydrated 23%, as determined by relative water content. Incorporation of [(35)S]methionine into protein was greater in the resistant than in the sensitive line in both treatments. The pattern of synthesis of HSPs in the two lines was similar in treatments 1 and 2. Both lines synthesized a high molecular mass set and a low molecular mass set of HSPs. Proteins from both sets from both lines of maize appeared similar to each other, with respect to the molecular mass. Heated plants of the drought- and heat-resistant line ZPBL 1304 synthesized a band of HSP(s) of approximately 45 kilodaltons which was not found in heated plants of the drought and heat sensitive line ZPL 389. This is the first report on qualitative intraspecific difference in the synthesis of HSPs in maize.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Plant Physiol. 1989 Jul;90(3):1156-62 - PubMed
    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Can J Biochem. 1982 May;60(5):569-79 - PubMed
    1. J Biol Chem. 1985 Dec 15;260(29):15382-5 - PubMed
    1. Plant Physiol. 1984 Jun;75(2):431-41 - PubMed

LinkOut - more resources