Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 May;99(1):26-33.
doi: 10.1104/pp.99.1.26.

Effect of inhibition of abscisic Acid accumulation on the spatial distribution of elongation in the primary root and mesocotyl of maize at low water potentials

Affiliations

Effect of inhibition of abscisic Acid accumulation on the spatial distribution of elongation in the primary root and mesocotyl of maize at low water potentials

I N Saab et al. Plant Physiol. 1992 May.

Abstract

Previous work showed that accumulation of endogenous abscisic acid (ABA) acts both to maintain primary root growth and inhibit shoot growth in maize seedlings at low water potentials (psi(w)) (IN Saab, RE Sharp, J Pritchard, GS Voetberg [1990] Plant Physiol 93: 1329-1336). In this study, we have characterized the growth responses of the primary root and mesocotyl of maize (Zea mays L. cv FR27 x FRMo 17) to manipulation of ABA levels at low psi(w) with a high degree of spatial resolution to provide the basis for studies of the mechanism(s) of ABA action. In seedlings growing at low psi(w) and treated with fluridone to inhibit carotenoid (and ABA) biosynthesis, ABA levels were decreased in all locations of the root and mesocotyl growing zones compared with untreated seedlings growing at the same psi(w). In the root, low psi(w) (-1.6 megapascals) caused a shortening of the growing zone, as reported previously. The fluridone treatment was associated with severe inhibition of root elongation rate, which resulted from further shortening of the growing zone. In the mesocotyl, low psi(w) (-0.3 megapascal) also resulted in a shortened growing zone. In contrast with the primary root, however, fluridone treatment prevented most of the inhibition of elongation and the shortening of the growing zone. Final cell length measurements indicated that the responses of both root and mesocotyl elongation to ABA manipulation at low psi(w) involve large effects on cell expansion. Measurements of the relative changes in root and shoot water contents and dry weights after transplanting to a psi(w) of -0.3 megapascal showed that the maintenance of shoot elongation in fluridone-treated seedlings was not attributable to increased water or seed-reserve availability resulting from inhibition of root growth. The results suggest a developmental gradient in tissue responsiveness to endogenous ABA in both the root and mesocotyl growing zones. In the root, the capacity for ABA to protect cell expansion at low psi(w) appears to decrease with increasing distance from the apex. In the mesocotyl, in contrast, the accumulation of ABA at low psi(w) appears to become increasingly inhibitory to expansion as cells are displaced away from the meristematic region.

PubMed Disclaimer

References

    1. Plant Physiol. 1990 Aug;93(4):1337-46 - PubMed
    1. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1044-51 - PubMed
    1. Plant Physiol. 1990 Aug;93(4):1329-36 - PubMed
    1. Plant Physiol. 1991 Jun;96(2):438-43 - PubMed
    1. Plant Physiol. 1988 May;87(1):50-7 - PubMed

LinkOut - more resources