Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jul;99(3):879-85.
doi: 10.1104/pp.99.3.879.

Peroxidase Activity in the Leaf Elongation Zone of Tall Fescue : II. Spatial Distribution of Apoplastic Peroxidase Activity in Genotypes Differing in Length of the Elongation Zone

Affiliations

Peroxidase Activity in the Leaf Elongation Zone of Tall Fescue : II. Spatial Distribution of Apoplastic Peroxidase Activity in Genotypes Differing in Length of the Elongation Zone

J W Macadam et al. Plant Physiol. 1992 Jul.

Abstract

Previous work suggested that cell wall peroxidase activity increased as cells were displaced through the elongation zone in leaf blades of tall fescue (Festuca arundinacea Schreb.). In this study, two genotypes that differ in length of the elongation zone were used to examine the relationship between peroxidase activity in apoplastic fluid of intact leaf blade segments and the spatial distribution of leaf growth. Apoplastic fluid was extracted by vacuum infiltration and centrifugation, and peroxidase activity was assayed spectrophotometrically. Isoelectric focusing was used to characterize the isoforms of apoplastic peroxidase within the region of elongation and in the region of secondary cell wall deposition, which is distal to the elongation zone. A striking correlation was found in each genotype between both the location and timing of increase in apoplastic peroxidase activity and the onset of growth deceleration. Only cationic isoforms of apoplastic peroxidase could be identified in the elongation zone, whereas additional anionic isoforms appeared in the region of secondary cell wall deposition. We conclude that cessation of elongation growth in tall fescue leaf blades is likely to be related to the secretion of cationic isoforms of peroxidase into the cell wall.

PubMed Disclaimer

References

    1. Plant Physiol. 1989 May;90(1):185-90 - PubMed
    1. Anal Biochem. 1976 May 7;72:248-54 - PubMed
    1. J Cell Sci. 1981 Apr;48:345-53 - PubMed
    1. Plant Physiol. 1988;88:1446-53 - PubMed
    1. Clin Ther. 1985;7(4):418-23 - PubMed

LinkOut - more resources