Potato Tuber UDP-Glucose:Protein Transglucosylase Catalyzes Its Own Glucosylation
- PMID: 16669042
- PMCID: PMC1080630
- DOI: 10.1104/pp.99.4.1342
Potato Tuber UDP-Glucose:Protein Transglucosylase Catalyzes Its Own Glucosylation
Abstract
Potato (Solanum tuberosum L.) tuber UDP-glucose:protein transglucosylase (UPTG) (EC 2.4.1.112) is involved in the first of a two-step mechanism proposed for protein-bound alpha-glucan synthesis by catalyzing the covalent attachment of a single glucose residue to an acceptor protein. The resulting glucosylated 38-kilodalton polypeptide would then serve as a primer for enzymic glucan chain elongation during the second step. In the present report, we describe the fast protein liquid chromatography purification of UPTG from a membrane pellet of potato tuber. An apparently close association of UPTG, phosphorylase, and starch synthase was observed under native conditions during different purification steps. Enrichment of a 38-kilodalton polypeptide was found throughout enzyme purification. It is now shown that the purified UPTG, with an apparent molecular mass of 38 kilodaltons, undergoes self-glucosylation in a UDP-glucose- and Mn(2+)-dependent reaction. Therefore, it is concluded that UPTG is the enzyme and at the same time the priming protein required for the biogenesis of protein-bound alpha-glucan in potato tuber.
References
LinkOut - more resources
Full Text Sources
Other Literature Sources