Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May 15;176(10):5788-96.
doi: 10.4049/jimmunol.176.10.5788.

ERK1-/- mice exhibit Th1 cell polarization and increased susceptibility to experimental autoimmune encephalomyelitis

Affiliations

ERK1-/- mice exhibit Th1 cell polarization and increased susceptibility to experimental autoimmune encephalomyelitis

Anshu Agrawal et al. J Immunol. .

Abstract

Activation of MAPK ERK1/2 has been shown to play an important role in Th1/Th2 polarization and in regulating cytokine production from APCs. The ERK family consists of two members ERK1 and ERK2, which share approximately 84% identity at the amino acid level and can compensate for each other for most functions. Despite these features, ERK1 and ERK2 do serve different functions, but there is very little information on the contribution of individual forms of ERK on innate and adaptive immune responses. In this study, we describe that ERK1(-/-) mice display a bias toward Th1 type immune response. Consistent with this observation, dendritic cells from ERK1(-/-) mice show enhanced IL-12p70 and reduced IL-10 secretion in response to TLR stimulation. Furthermore, serum from ERK1(-/-) mice had 100-fold higher total IgG2b and 10-fold higher total IgG2a and IgG1 Ab isotype titers, and enhanced levels of Ag-specific IgG2b Ab titers, compared with wild-type mice. Consistent with this enhanced Th1 bias, ERK1(-/-) mice showed enhanced susceptibility to myelin oligodendrocyte glycoprotein (MOG)35-55 peptide-induced experimental autoimmune encephalomyelitis (EAE) and developed EAE earlier, and with increased severity, compared with wild-type mice. Importantly, there was a profound skewing toward Th1 responses in ERK1(-/-) mice, with higher IFN-gamma production and lower IL-5 production in MOG35-55-primed T cells, as well as an augmentation in the MOG-specific IgG2a and IgG2b Th1 Ab isotypes. Finally, increased infiltrating cells and myelin destruction was observed in the spinal cord of ERK1(-/-) mice. Taken together, our data suggest that deficiency of ERK1 biases the immune response toward Th1 resulting in increased susceptibility to EAE.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources