Activation of the HOG pathway upon cold stress in Saccharomyces cerevisiae
- PMID: 16672281
- DOI: 10.1093/jb/mvj089
Activation of the HOG pathway upon cold stress in Saccharomyces cerevisiae
Abstract
When Saccharomyces cerevisiae cells are exposed to hyper-osmotic stress, the high-osmolarity glycerol response (HOG) pathway is activated to induce osmotic responses. The HOG pathway consists of two upstream osmosensing branches, the SLN1 and SHO1 branches, and a downstream MAP kinase cascade. Although the mechanisms by which these upstream branches transmit signals to the MAP kinase cascade are well understood, the mechanisms by which they sense and respond to osmotic changes are elusive. Here we show that the HOG pathway is activated in an SLN1 branch-dependent manner when cells are exposed to cold stress (0 degrees C treatment). Dimethyl sulfoxide (DMSO) treatment, which rigidifies the cell membrane, also activates the HOG pathway in both SLN1 branch- and SHO1 branch-dependent manners. Moreover, cold stress, as well as hyper-osmotic stress, exhibits a synergistic effect with DMSO treatment on HOG pathway activation. On the other hand, ethanol treatment, which fluidizes the cell membrane, partially represses the cold stress-induced HOG pathway activation. Our results suggest that both osmosensing branches respond to the rigidification of the cell membrane to activate the HOG pathway.
Similar articles
-
A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae.J Biol Chem. 2006 Feb 24;281(8):4638-45. doi: 10.1074/jbc.M512736200. Epub 2005 Dec 21. J Biol Chem. 2006. PMID: 16371351
-
Sphingolipids regulate the yeast high-osmolarity glycerol response pathway.Mol Cell Biol. 2012 Jul;32(14):2861-70. doi: 10.1128/MCB.06111-11. Epub 2012 May 14. Mol Cell Biol. 2012. PMID: 22586268 Free PMC article.
-
A model-based study delineating the roles of the two signaling branches of Saccharomyces cerevisiae, Sho1 and Sln1, during adaptation to osmotic stress.Phys Biol. 2009 Aug 6;6(3):036019. doi: 10.1088/1478-3975/6/3/036019. Phys Biol. 2009. PMID: 19657148
-
[Mechanism of HOG-MAPK pathway in regulating mycotoxins formation under environmental stresses].Sheng Wu Gong Cheng Xue Bao. 2022 Jul 25;38(7):2433-2446. doi: 10.13345/j.cjb.220060. Sheng Wu Gong Cheng Xue Bao. 2022. PMID: 35871615 Review. Chinese.
-
MAPK signaling: Sho business.Curr Biol. 2004 Sep 7;14(17):R708-10. doi: 10.1016/j.cub.2004.08.044. Curr Biol. 2004. PMID: 15341761 Review.
Cited by
-
Osmolytes and membrane lipids in adaptive response of thermophilic fungus Rhizomucor miehei to cold, osmotic and oxidative shocks.Extremophiles. 2020 May;24(3):391-401. doi: 10.1007/s00792-020-01163-3. Epub 2020 Mar 6. Extremophiles. 2020. PMID: 32144516
-
Cellular processes and pathways that protect Saccharomyces cerevisiae cells against the plasma membrane-perturbing compound chitosan.Eukaryot Cell. 2007 Apr;6(4):600-8. doi: 10.1128/EC.00355-06. Epub 2007 Jan 26. Eukaryot Cell. 2007. PMID: 17259547 Free PMC article.
-
Water structure in vitro and within Saccharomyces cerevisiae yeast cells under conditions of heat shock.Biochim Biophys Acta. 2008 Jan;1780(1):41-50. doi: 10.1016/j.bbagen.2007.09.011. Epub 2007 Sep 26. Biochim Biophys Acta. 2008. PMID: 17961925 Free PMC article.
-
The adaptive landscape of wildtype and glycosylation-deficient populations of the industrial yeast Pichia pastoris.BMC Genomics. 2017 Aug 10;18(1):597. doi: 10.1186/s12864-017-3952-7. BMC Genomics. 2017. PMID: 28797224 Free PMC article.
-
The Glycerol Phosphatase Gpp2: A Link to Osmotic Stress, Sulfur Assimilation and Virulence in Cryptococcus neoformans.Front Microbiol. 2019 Nov 26;10:2728. doi: 10.3389/fmicb.2019.02728. eCollection 2019. Front Microbiol. 2019. PMID: 31849880 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases