Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May 12;71(10):3829-36.
doi: 10.1021/jo060223t.

Multiple isotope effect study of the acid-catalyzed hydrolysis of formamide

Affiliations

Multiple isotope effect study of the acid-catalyzed hydrolysis of formamide

John F Marlier et al. J Org Chem. .

Abstract

Multiple isotope effects were measured at the reactive center of formamide during acid-catalyzed hydrolysis in water at 25 degrees C. The mechanism involves a rapid pre-equilibrium protonation of the carbonyl oxygen, followed by the formation of at least one tetrahedral intermediate, which does not appreciably exchange its carbonyl oxygen with the solvent (kh/kex = 55). The pKa for formamide was determined by 15N NMR and found to be about -2.0. The formyl-hydrogen kinetic isotope effect (KIE) is indicative of a transition state that is highly tetrahedral (Dkobs = 0.79); the carbonyl-carbon KIE (13kobs = 1.031) is in agreement with this conclusion. The small leaving-nitrogen KIE (15kobs = 1.0050) is consistent with some step prior to breaking the C-N bond as rate-determining. The carbonyl-oxygen KIE (18kobs = 0.996) points to attack of water as the rate-determining step. On the basis of these results, a mechanism is proposed in which attachment of the nucleophile to a protonated formamide molecule is rate determining.

PubMed Disclaimer

Publication types

LinkOut - more resources