A multiplicity of potential carbon catabolite repression mechanisms in prokaryotic and eukaryotic microorganisms
- PMID: 1667478
A multiplicity of potential carbon catabolite repression mechanisms in prokaryotic and eukaryotic microorganisms
Abstract
The discovery of cyclic AMP (cAMP) and its receptor protein in Escherichia coli and the convincing demonstration that these molecules mediate catabolite repression of the synthesis of carbohydrate catabolic enzymes led to the widespread belief that the phenomenon of catabolite repression in bacteria was understood. It is now recognized that cAMP-independent catabolite repression mechanisms are operative in both prokaryotic and eukaryotic microorganisms. New evidence has led to the identification of a diversity of cAMP-independent regulatory mechanisms that may mediate catabolite repression in bacteria. These mechanisms utilize (i) novel transcription factors, (ii) starvation-induced RNA polymerase sigma factors, and (iii) three evolutionarily distinct protein phosphorylating enzyme systems. Although these mechanisms are not fully understood, it is suggested that they exert their effects at the transcriptional level and that phosphorylation and allosteric control by regulatory proteins are involved in these processes.
Similar articles
-
The mechanisms of carbon catabolite repression in bacteria.Curr Opin Microbiol. 2008 Apr;11(2):87-93. doi: 10.1016/j.mib.2008.02.007. Epub 2008 Mar 21. Curr Opin Microbiol. 2008. PMID: 18359269 Review.
-
Negative control of rpoS expression by phosphoenolpyruvate: carbohydrate phosphotransferase system in Escherichia coli.J Bacteriol. 2001 Jan;183(2):520-7. doi: 10.1128/JB.183.2.520-527.2001. J Bacteriol. 2001. PMID: 11133945 Free PMC article.
-
Carbon catabolite repression in bacteria.Curr Opin Microbiol. 1999 Apr;2(2):195-201. doi: 10.1016/S1369-5274(99)80034-4. Curr Opin Microbiol. 1999. PMID: 10322165
-
Interplay between CRP-cAMP and PII-Ntr systems forms novel regulatory network between carbon metabolism and nitrogen assimilation in Escherichia coli.Nucleic Acids Res. 2007;35(5):1432-40. doi: 10.1093/nar/gkl1142. Epub 2007 Feb 6. Nucleic Acids Res. 2007. PMID: 17284458 Free PMC article.
-
Cyclic AMP-independent catabolite repression in bacteria.FEMS Microbiol Lett. 1996 May 1;138(2-3):97-103. doi: 10.1111/j.1574-6968.1996.tb08141.x. FEMS Microbiol Lett. 1996. PMID: 9026456 Review.
Cited by
-
Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression.J Bacteriol. 1994 Mar;176(6):1738-45. doi: 10.1128/jb.176.6.1738-1745.1994. J Bacteriol. 1994. PMID: 8132469 Free PMC article.
-
Analysis of catabolite control protein A-dependent repression in Staphylococcus xylosus by a genomic reporter gene system.J Bacteriol. 2001 Jan;183(2):580-6. doi: 10.1128/JB.183.2.580-586.2001. J Bacteriol. 2001. PMID: 11133951 Free PMC article.
-
The effect of nutrient limitation on styrene metabolism in Pseudomonas putida CA-3.Appl Environ Microbiol. 1996 Oct;62(10):3594-9. doi: 10.1128/aem.62.10.3594-3599.1996. Appl Environ Microbiol. 1996. PMID: 8967774 Free PMC article.
-
Feedback control of gene expression.Photosynth Res. 1994 Mar;39(3):427-38. doi: 10.1007/BF00014596. Photosynth Res. 1994. PMID: 24311134
-
Glucose repression in Streptomyces coelicolor A3(2): a likely regulatory role for glucose kinase.Mol Gen Genet. 1994 Jul 25;244(2):135-43. doi: 10.1007/BF00283514. Mol Gen Genet. 1994. PMID: 8052232