Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007;40(3):569-78.
doi: 10.1016/j.jbiomech.2006.02.009. Epub 2006 May 3.

Stretch-induced nerve conduction deficits in guinea pig ex vivo nerve

Affiliations

Stretch-induced nerve conduction deficits in guinea pig ex vivo nerve

Jianming Li et al. J Biomech. 2007.

Abstract

In the current communication, we characterized supraphysiologic elongations that elicited short-term nerve dysfunction. This was accomplished by assessing the electrophysiology of guinea pig tibial and peroneal nerves at predetermined elongation magnitudes. Results showed that a longitudinal supraphysiological stretch of lambda = 1.05 caused a 16% reduction in the mean compound action potential (CAP) amplitude. Upon relaxation to physiologic length, a full recovery in the CAP was observed. At lambda = 1.10, the CAP decreased by 50% with an 88% recovery after relaxation. For a supraphysiologic stretch of lambda = 1.20, severe conduction block with minimal acute recovery was observed. Latency also increased during periods of stretch and was proportional to the stretch magnitude. Additional studies showed some electrophysiological recovery during the sustained stretch phase. This attribute may be related to internal stress relaxation mechanisms. Since whole nerve elongations are averaged global deformations, we also used an incremental digital image correlation (DIC) technique to characterize the strain at the micro-tissue level. The DIC analysis revealed considerable heterogeneity in the planar strain field, with some regions exhibiting strains above the macroscale stretch. This non-uniformity in the strain map arises from structural inconsistencies of the nerve and we presume that zones of high local strain may translate into the observed conduction deficits.

PubMed Disclaimer

Publication types

LinkOut - more resources