Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov 18;113(3):348-54.
doi: 10.1016/j.ijcard.2005.11.060. Epub 2006 May 3.

Skeletal muscle cells expressing VEGF induce capillary formation and reduce cardiac injury in rats

Affiliations

Skeletal muscle cells expressing VEGF induce capillary formation and reduce cardiac injury in rats

Claudia Becker et al. Int J Cardiol. .

Abstract

Background: We tested a preemptive combined cell/gene therapy strategy of skeletal myoblasts transfected with Ad(5)RSVVEGF-165 in an ischemia/reperfusion rat model to increase collateral blood flow to nonischemic heart tissue.

Methods: Lewis rats were injected with placebo (Control), 10(6) skeletal myoblasts (SkM), or 10(6) skeletal myoblasts transfected with Ad(5)RSVVEGF-165 (SkM(+)) into the left ventricle 1week before ischemia. Left ventricle end-diastolic pressure, scar area, and capillary density were assessed 4weeks later.

Results: Local expression of human vascular endothelial growth factor was accompanied by an increase in capillary density in the SkM(+) group compared with that in the SkM and Control groups (700+/-40 vs. 289+/-18 and 318+/-59capillaries/mm(2), respectively; p<0.05). After 3weeks, the myocardial scar area was reduced in SkM(+) vs. Control (5.3+/-0.4% and 14.8+/-1.6%, p<0.05), while injected cells alone (SkM) did not cause improvement compared with Control (11.8+/-2.1% vs. 14.8+/-1.6%, p>0.05). The decrease in the scar area in SkM(+) was accompanied by an increase in the capillary density compared with that in SkM and Control 30days after cell injection (1005+/-108 vs. 524+/-16 and 528+/-26capillaries/mm(2), respectively; p<0.05). The scar areas were discrete (5.3-14.8%) and left ventricle end-diastolic pressure in all groups were comparable (p>0.05).

Conclusions: The combined cell/gene therapy strategy of genetically modified myoblast cells expressing angiogenic factors injected into the myocardium induced capillary formation and prevented the extension and development of cardiac damage associated with ischemia/reperfusion in rats.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources