Arsenic exposure and type 2 diabetes: a systematic review of the experimental and epidemiological evidence
- PMID: 16675414
- PMCID: PMC1459913
- DOI: 10.1289/ehp.8551
Arsenic exposure and type 2 diabetes: a systematic review of the experimental and epidemiological evidence
Abstract
Chronic arsenic exposure has been suggested to contribute to diabetes development. We performed a systematic review of the experimental and epidemiologic evidence on the association of arsenic and type 2 diabetes. We identified 19 in vitro studies of arsenic and glucose metabolism. Five studies reported that arsenic interfered with transcription factors involved in insulin-related gene expression: upstream factor 1 in pancreatic beta-cells and peroxisome proliferative-activated receptor gamma in preadipocytes. Other in vitro studies assessed the effect of arsenic on glucose uptake, typically using very high concentrations of arsenite or arsenate. These studies provide limited insight on potential mechanisms. We identified 10 in vivo studies in animals. These studies showed inconsistent effects of arsenic on glucose metabolism. Finally, we identified 19 epidemiologic studies (6 in high-arsenic areas in Taiwan and Bangladesh, 9 in occupational populations, and 4 in other populations). In studies from Taiwan and Bangladesh, the pooled relative risk estimate for diabetes comparing extreme arsenic exposure categories was 2.52 (95% confidence interval, 1.69-3.75), although methodologic problems limit the interpretation of the association. The evidence from occupational studies and from general populations other than Taiwan or Bangladesh was inconsistent. In summary, the current available evidence is inadequate to establish a causal role of arsenic in diabetes. Because arsenic exposure is widespread and diabetes prevalence is reaching epidemic proportions, experimental studies using arsenic concentrations relevant to human exposure and prospective epidemiologic studies measuring arsenic biomarkers and appropriately assessing diabetes should be a research priority.
Figures
References
-
- Aguilar MV, Martinez-Para MC, Gonzalez MJ. Effects of arsenic (V)-chromium (III) interaction on plasma glucose and cholesterol levels in growing rats. Ann Nutr Metab. 1997;41:189–195. - PubMed
-
- Aposhian HV. 1989. Biochemical toxicology of arsenic. In: Reviews in Biochemical Toxicology (Hodgson E, Bend JR, Philpot RM, eds). Vol 10. Amsterdam:Elsevier, 265–289.
-
- Arnold LL, Eldan M, van Gemert M, Capen CC, Cohen SM. Chronic studies evaluating the carcinogenicity of monomethylarsonic acid in rats and mice. Toxicology. 2003;190:197–219. - PubMed
-
- Barchowsky A, Klei LR, Dudek EJ, Swartz HM, James PE. Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite. Free Radic Biol Med. 1999;27:1405–1412. - PubMed
-
- Bartoli D, Battista G, De Santis M, Iaia TE, Orsi D, Tarchi M, et al. Cohort study of art glass workers in Tuscany, Italy: mortality from non-malignant diseases. Occup Med (Lond) 1998;48:441–445. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
