Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May;114(5):649-54.
doi: 10.1289/ehp.8422.

Factors affecting the association between ambient concentrations and personal exposures to particles and gases

Affiliations

Factors affecting the association between ambient concentrations and personal exposures to particles and gases

Stefanie Ebelt Sarnat et al. Environ Health Perspect. 2006 May.

Abstract

Results from air pollution exposure assessment studies suggest that ambient fine particles [particulate matter with aerodynamic diameter<or=2.5 microg (PM2.5)], but not ambient gases, are strong proxies of corresponding personal exposures. For particles, the strength of the personal-ambient association can differ by particle component and level of home ventilation. For gases, however, such as ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), the impact of home ventilation on personal-ambient associations is untested. We measured 24-hr personal exposures and corresponding ambient concentrations to PM2.5, sulfate (SO2-(4)), elemental carbon, O3, NO2, and SO2 for 10 nonsmoking older adults in Steubenville, Ohio. We found strong associations between ambient particle concentrations and corresponding personal exposures. In contrast, although significant, most associations between ambient gases and their corresponding exposures had low slopes and R2 values; the personal-ambient NO2 association in the fall season was moderate. For both particles and gases, personal-ambient associations were highest for individuals spending most of their time in high- compared with low-ventilated environments. Cross-pollutant models indicated that ambient particle concentrations were much better surrogates for exposure to particles than to gases. With the exception of ambient NO2 in the fall, which showed moderate associations with personal exposures, ambient gases were poor proxies for both gas and particle exposures. In combination, our results suggest that a) ventilation may be an important modifier of the magnitude of effect in time-series health studies, and b) results from time-series health studies based on 24-hr ambient concentrations are more readily interpretable for particles than for gases.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Brauer M, Koutrakis P, Spengler JD. Personal exposure to acidic aerosols and gases. Environ Sci Technol. 1989;23:1408–1412. - PubMed
    1. Chang LT, Sarnat JA, Wolfson JM, Rojas-Bracho L, Suh HH, Koutrakis P. 1999. Development of a personal multi-pollutant exposure sampler for particulate matter and criteria gases. Pollution Atmosphérique Numéro Spécial 40e Anniversaire de l’APPA:31–39.
    1. Connell DP, Withum JA, Winter SE, Statnick RM, Bilonick RA. The Steubenville Comprehensive Air Monitoring Program (SCAMP): associations among fine particulate matter, co-pollutants, and meteorological conditions. J Air Waste Manag Assoc. 2005;55(4):481–496. - PubMed
    1. Demokritou P, Kavouras IG, Ferguson ST, Koutrakis P. Development and laboratory performance evaluation of a personal multipollutant sampler for simultaneous measurements of particulate and gaseous pollutants. Aerosol Sci Technol. 2001;35:741–752.
    1. Devlin RB, Folinsbee LJ, Biscardi F, Hatch G, Becker S, Madden MC, et al. Inflammation and cell damage induced by repeated exposure of humans to ozone. Inhal Toxicol. 1997;9:211–235.

Publication types

LinkOut - more resources