Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun;37(6):1471-6.
doi: 10.1161/01.STR.0000221233.55497.51. Epub 2006 May 4.

Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke

Affiliations

Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke

Yun-Hee Kim et al. Stroke. 2006 Jun.

Erratum in

  • Stroke. 2006 Nov;37(11):2861

Abstract

Background and purpose: Although there is some early evidence showing the value of repetitive transcranial magnetic stimulation (rTMS) in stroke rehabilitation, the therapeutic effect of high-frequency rTMS, along with the physiology of rTMS-induced corticomotor excitability supporting motor learning in stroke, has not been established. This study investigated high-frequency rTMS-induced cortical excitability and the associated motor skill acquisition in chronic stroke patients.

Methods: Fifteen patients with chronic hemiparetic stroke (13 men; mean age 53.5 years) practiced a complex, sequential finger motor task using their paretic fingers either after 10 Hz or sham rTMS over the contralateral primary motor cortex (M1). Both the changes in the behavior and corticomotor excitability before and after the intervention were examined by measuring the movement accuracy, the movement time, and the motor-evoked potential (MEP) amplitude. A separate repeated-measures ANOVA and correlation statistics were used to determine the main and interaction effects as well as relationship between the changes in the behavioral and corticomotor excitability.

Results: High-frequency rTMS resulted in a significantly larger increase in the MEP amplitude than the sham rTMS (P<0.01), and the plastic change was positively associated with an enhanced motor performance accuracy (P<0.05).

Conclusions: High-frequency rTMS of the affected motor cortex can facilitate practice-dependent plasticity and improve the motor learning performance in chronic stroke victims.

PubMed Disclaimer

Comment in

Publication types

MeSH terms