Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May;20(7):858-64.
doi: 10.1096/fj.05-4966.com.

Bone cell responses to high-frequency vibration stress: does the nucleus oscillate within the cytoplasm?

Affiliations

Bone cell responses to high-frequency vibration stress: does the nucleus oscillate within the cytoplasm?

Rommel G Bacabac et al. FASEB J. 2006 May.

Abstract

Mechanosensing by cells directs changes in bone mass and structure in response to the challenges of mechanical loading. Low-amplitude, high-frequency loading stimulates bone growth by enhancing bone formation and inhibiting disuse osteoporosis. However, how bone cells sense vibration stress is unknown. Hence, we investigated bone cell responses to vibration stress at a wide frequency range (5-100 Hz). We used NO and prostaglandin E2 (PGE2) release, and COX-2 mRNA expression as parameters for bone cell response since these molecules regulate bone adaptation to mechanical loading. NO release positively correlated whereas PGE2 release negatively correlated to the maximum acceleration rate of the vibration stress. COX-2 mRNA expression increased in a frequency-dependent manner, which relates to increased NO release at high frequencies, confirming our previous results. The negatively correlated release of NO and PGE2 suggests that these signaling molecules play different roles in bone adaptation to high-frequency loading. The maximum acceleration rate is proportional to omega3 (frequency=omega/2pi), which is commensurate with the Stokes-Einstein relation for modeling cell nucleus motion within the cytoplasm due to vibration stress. Correlations of NO and PGE2 with the maximum acceleration rate then relate to nucleus oscillations, providing a physical basis for cellular mechanosensing of high-frequency loading.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources