Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Jan-Mar;6(1):3-15.

The search for human osteoporosis genes

Affiliations
  • PMID: 16675885
Free article
Review

The search for human osteoporosis genes

J M Zmuda et al. J Musculoskelet Neuronal Interact. 2006 Jan-Mar.
Free article

Abstract

Osteoporosis is the most prevalent metabolic bone disease and a major clinical and public health problem. Heredity plays an important and well-established role in determining the lifetime risk of this disease. Major efforts are currently underway to identify the specific genes and their allelic variations that contribute to the heritable component to osteoporosis. A number of laboratories are using quantitative trait locus (QTL) methods of genome scanning in families and animal models to identify candidate genomic regions and, ultimately, the genes and genetic variations that lead to osteoporosis. Several chromosomal regions of the human genome have now been linked to osteoporosis-related phenotypes. Although the specific genes contributing to the majority of these linkage signals have not been identified, two positional candidate genes have now been identified: low density lipoprotein receptor-related protein 5 (LRP5) and bone morphogenetic protein 2 (BMP2). A number of QTL has also been identified by cross-breeding strains of mice with variable bone density and several of these QTL have been fine mapped, providing a rich new base for understanding osteoporosis. Genetic association analyses have also provided evidence for a modest relationship between allelic variants in several biological candidate genes and bone mass and the risk of fracture. These ongoing animal and human studies will provide a continuing source of new insight into the genetic regulation of bone and mineral metabolism and the molecular etiology of osteoporosis. The new insight that will emerge from this ongoing research should lead to new ways of diagnosing, preventing and treating the growing clinical and public health problem of osteoporosis.

PubMed Disclaimer

Publication types