Structure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition
- PMID: 16675947
- PMCID: PMC1478180
- DOI: 10.1038/sj.emboj.7601129
Structure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition
Abstract
Methanogenic archaea possess unusual seryl-tRNA synthetase (SerRS), evolutionarily distinct from the SerRSs found in other archaea, eucaryotes and bacteria. The two types of SerRSs show only minimal sequence similarity, primarily within class II conserved motifs 1, 2 and 3. Here, we report a 2.5 A resolution crystal structure of the atypical methanogenic Methanosarcina barkeri SerRS and its complexes with ATP, serine and the nonhydrolysable seryl-adenylate analogue 5'-O-(N-serylsulfamoyl)adenosine. The structures reveal two idiosyncratic features of methanogenic SerRSs: a novel N-terminal tRNA-binding domain and an active site zinc ion. The tetra-coordinated Zn2+ ion is bound to three conserved protein ligands (Cys306, Glu355 and Cys461) and binds the amino group of the serine substrate. The absolute requirement of the metal ion for enzymatic activity was confirmed by mutational analysis of the direct zinc ion ligands. This zinc-dependent serine recognition mechanism differs fundamentally from the one employed by the bacterial-type SerRSs. Consequently, SerRS represents the only known aminoacyl-tRNA synthetase system that evolved two distinct mechanisms for the recognition of the same amino-acid substrate.
Figures






Similar articles
-
Crystallographic and mutational studies of seryl-tRNA synthetase from the archaeon Pyrococcus horikoshii.RNA Biol. 2008 Jul-Sep;5(3):169-77. doi: 10.4161/rna.5.3.6876. Epub 2008 Jul 28. RNA Biol. 2008. PMID: 18818520
-
Idiosyncratic helix-turn-helix motif in Methanosarcina barkeri seryl-tRNA synthetase has a critical architectural role.J Biol Chem. 2009 Apr 17;284(16):10706-13. doi: 10.1074/jbc.M808501200. Epub 2009 Feb 19. J Biol Chem. 2009. PMID: 19228694 Free PMC article.
-
Structural flexibility of the methanogenic-type seryl-tRNA synthetase active site and its implication for specific substrate recognition.FEBS J. 2008 Jun;275(11):2831-44. doi: 10.1111/j.1742-4658.2008.06423.x. Epub 2008 Apr 18. FEBS J. 2008. PMID: 18422966
-
Escherichia coli seryl-tRNA synthetase: the structure of a class 2 aminoacyl-tRNA synthetase.Biochim Biophys Acta. 1991 Jul 23;1089(3):287-98. doi: 10.1016/0167-4781(91)90168-l. Biochim Biophys Acta. 1991. PMID: 1859832 Review. No abstract available.
-
Structure, function and evolution of seryl-tRNA synthetases: implications for the evolution of aminoacyl-tRNA synthetases and the genetic code.J Mol Evol. 1995 May;40(5):519-30. doi: 10.1007/BF00166620. J Mol Evol. 1995. PMID: 7540217 Review.
Cited by
-
Dispensability of zinc and the putative zinc-binding domain in bacterial glutamyl-tRNA synthetase.Biosci Rep. 2015 Mar 31;35(2):e00184. doi: 10.1042/BSR20150005. Biosci Rep. 2015. PMID: 25686371 Free PMC article.
-
Homologs of aminoacyl-tRNA synthetases acylate carrier proteins and provide a link between ribosomal and nonribosomal peptide synthesis.Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14585-90. doi: 10.1073/pnas.1007470107. Epub 2010 Jul 27. Proc Natl Acad Sci U S A. 2010. PMID: 20663952 Free PMC article.
-
An archaeal tRNA-synthetase complex that enhances aminoacylation under extreme conditions.J Biol Chem. 2011 Feb 4;286(5):3396-404. doi: 10.1074/jbc.M110.168526. Epub 2010 Nov 22. J Biol Chem. 2011. PMID: 21098026 Free PMC article.
-
Aminoacyl-tRNA synthetases.RNA. 2020 Aug;26(8):910-936. doi: 10.1261/rna.071720.119. Epub 2020 Apr 17. RNA. 2020. PMID: 32303649 Free PMC article. Review.
-
Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology.Nat Rev Microbiol. 2015 Nov;13(11):707-721. doi: 10.1038/nrmicro3568. Epub 2015 Sep 22. Nat Rev Microbiol. 2015. PMID: 26411296 Free PMC article. Review.
References
-
- Ahel D, Slade D, Mocibob M, Söll D, Weygand-Durasevic I (2005) Selective inhibition of divergent seryl-tRNA synthetases by serine analogues. FEBS Lett 579: 4344–4348 - PubMed
-
- Arnez JG, Dock-Bregeon AC, Moras D (1999) Glycyl-tRNA synthetase uses a negatively charged pit for specific recognition and activation of glycine. J Mol Biol 286: 1449–1459 - PubMed
-
- Baldwin AN, Berg P (1966) Transfer ribonucleic acid-induced hydrolysis of valyladenylate bound to isoleucyl ribonucleic acid synthetase. J Biol Chem 241: 839–845 - PubMed
-
- Baron B, Bock B (1995) The selenocysteine-inserting tRNA species: structure and function. In tRNA: Structure, Biosynthesis and Function, Söll D, RajBhandary U (eds), pp 529–544. Washington, DC: American Society for Microbiology
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources