Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Sep;291(3):H1003-14.
doi: 10.1152/ajpheart.00132.2006. Epub 2006 May 5.

Cytoskeletal networks and the regulation of cardiac contractility: microtubules, hypertrophy, and cardiac dysfunction

Affiliations
Free article
Review

Cytoskeletal networks and the regulation of cardiac contractility: microtubules, hypertrophy, and cardiac dysfunction

George Cooper 4th. Am J Physiol Heart Circ Physiol. 2006 Sep.
Free article

Abstract

The cytoskeleton as classically defined for eukaryotic cells consists of three systems of protein filaments: the microtubules, the intermediate filaments, and the microfilaments. In mature striated muscle such as the heart of the adult mammal, these three types of cytoskeletal filaments are superimposed spatially on the myofilaments, a specialized system of contractile protein filaments. Each of these systems of protein filaments has the potential to respond in an adaptive or maladaptive manner during load-induced hypertrophic cardiac growth. However, the extent to which such hypertrophy is compensatory is also critically dependent on the type of hemodynamic overload that serves as the hypertrophic stimulus. Thus cardiac hypertrophy is not intrinsically maladaptive; rather, it is the nature of the inducing load rather than hypertrophy itself that is responsible, through effects on structural and/or regulatory proteins, for the frequent deterioration of initially compensatory hypertrophy into the congestive heart failure state. As one example reviewed here of this load specificity of maladaptation, increased microtubule network density is a persistent feature of severely pressure-overloaded, hypertrophied, and failing myocardium that imposes a primarily viscous load on active myofilaments during contraction.

PubMed Disclaimer

Publication types

LinkOut - more resources