Constitutively active Src tyrosine kinase changes gating of HCN4 channels through direct binding to the channel proteins
- PMID: 16680072
- PMCID: PMC1693968
- DOI: 10.1097/01.fjc.0000211740.47960.8b
Constitutively active Src tyrosine kinase changes gating of HCN4 channels through direct binding to the channel proteins
Abstract
Cardiac pacemaker current, if, is generated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Our previous studies demonstrated that altered tyrosine phosphorylation can modulate the properties of both if and HCN channels. To assess a hypothesis that the intracellular tyrosine kinase Src may play a role in modulation by tyrosine phosphorylation of if, we cotransfected HEK293 cells with HCN4 and Src proteins. When HCN4 was cotransfected with a constitutively activated Src protein (Src529), the resultant voltage-dependent HCN4 activation was positively shifted (HCN4: V1/2 = -93 mV; Src529: V1/2 = -80 mV). The activation kinetics were accelerated at some potentials but not over the entire voltage range tested (eg, at -95 mV, tau_act(HCN4) = 3,243 ms; tau_act(Src529) = 1,113 ms). When HCN4 was cotransfected with a dominant negative Src protein (Src296), the HCN4 activation was shifted more negative to a smaller degree (HCN4: V1/2 = -93 mV; Src296: V1/2 = -98 mV; statistically insignificant) and the activation kinetics were slowed at most test potentials (eg, at -95 mV, tau_act(Src296) = 7,396 ms). Neither Src529 nor Src296 significantly altered HCN4 current density. Coimmunoprecipitation experiments revealed that Src forms a complex with HCN4 in HEK293 cells and in rat ventricular myocytes. Our data provide a novel mechanism of if regulation by Src tyrosine phosphorylation.
Figures







References
-
- Davis MJ, Wu X, Nurkiewicz TR, et al. Regulation of ion channels by protein tyrosine phosphorylation. Am J Physiol Heart Circ Physiol. 2001;281:H1835–H1862. - PubMed
-
- Wu JY, Cohen IS. Tyrosine kinase inhibition reduces if in rabbit SA myocytes. Pflügers Arch. 1997;434:509–514. - PubMed
-
- Wu JY, Yu H, Cohen IS. Epidermal growth factor increases if in rabbit SA node cells by activating a tyrosine kinase. Biochim Biophys Acta. 2000;1463:15–19. - PubMed
-
- Nair BG, Rashed HM, Patel TB. Epidermal growth factor produces inotropic and chronotropic effects in rat hearts by increasing cyclic AMP accumulation. Growth Factors. 1993;8:41–48. - PubMed
-
- Rabkin SW, Sunga P, Myrdal S. The effect of epidermal growth factor on chronotropic response in cardiac cells in culture. Biochem Biophys Res Commun. 1987;146:889–897. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous