Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1991 Jul;15(3):147-52.

Signal transducing mechanisms in platelets

Affiliations
  • PMID: 1668017
Review

Signal transducing mechanisms in platelets

H Holmsen. Proc Natl Sci Counc Repub China B. 1991 Jul.

Abstract

Platelets respond through discrete receptors to a number of physiological stimuli and foreign surfaces with a sequence of measurable responses: shape change, aggregation, secretion and arachidonate liberation. Three secretory responses are distinguished: release of substances from 1) dense granules (ADP, serotonin), 2) alpha-granules (coagulation factors, platelet-specific proteins, adhesive proteins) and 3) lysosomes (acid hydrolases). The liberated arachidonate is converted to prostaglandins and thromboxanes which, together with secreted ADP and close cell contact, will cause further platelet activation through "positive feedback" (autocrine stimulation). Some agonists are "weak" (ADP, vasopressin, platelet-activating factor) and depend on positive feedback to promote the full sequence of responses, while other agonists are "strong" (thrombin, collagen) and stimulate the entire response sequence without positive feedback. Most agonists appear to stimulate platelet responses via G-protein-dependent activation of phospholipase C, resulting in diesteratic hydrolysis of phosphatidylinositol-4,5-bisphosphate yielding inositol-1,4,5-trisphosphate and diacylglycerol. These are signal molecules which mobilize cytoplasmic Ca2+ and stimulate protein kinase C, respectively. Cytoplasmic Ca2+ will in turn activate protein phosphorylations which eventually lead to execution of the various responses while activation of protein kinase C appears to be linked to regulation of intracellular pH through Na+/H+ exchanger and to termination of the Ca(2+)-mediated signal processing. Other agonists (prostaglandins I2 and D2) counteract platelet stimulation through classical activation of adenylate cyclase.

PubMed Disclaimer

MeSH terms

LinkOut - more resources