Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Aug 11;281(32):23138-49.
doi: 10.1074/jbc.M512621200. Epub 2006 May 8.

N-glycosylation affects the molecular organization and stability of E-cadherin junctions

Affiliations
Free article

N-glycosylation affects the molecular organization and stability of E-cadherin junctions

Aneta Liwosz et al. J Biol Chem. .
Free article

Abstract

Epithelial cell-cell adhesion is mediated by E-cadherin, an intercellular N-glycoprotein adhesion receptor that functions in the assembly of multiprotein complexes anchored to the actin cytoskeleton named adherens junctions (AJs). E-cadherin ectodomains 4 and 5 contain three potential N-glycan addition sites, although their significance in AJ stability is unclear. Here we show that sparse cells lacking stable AJs produced E-cadherin that was extensively modified with complex N-glycans. In contrast, dense cultures with more stable AJs had scarcely N-glycosylated E-cadherin modified with high mannose/hybrid and limited complex N-glycans. This suggested that variations in AJ stability were accompanied by quantitative and qualitative changes in E-cadherin N-glycosylation. To further examine the role of N-glycans in AJ function, we generated E-cadherin N-glycosylation variants lacking selected N-glycan addition sites. Characterization of these variants in CHO cells, lacking endogenous E-cadherin, revealed that site 1 on ectodomain 4 was modified with a prominent complex N-glycan, site 2 on ectodomain 5 did not have a substantial oligosaccharide, and site 3 on ectodomain 5 was decorated with a high mannose/hybrid N-glycan. Removal of complex N-glycan from ectodomain 4 led to a dramatically increased interaction of E-cadherin-catenin complexes with vinculin and the actin cytoskeleton. The latter effect was further enhanced by the deletion of the high mannose/hybrid N-glycan from site 3. In MDCK cells, which produce E-cadherin, a variant lacking both complex and high mannose/hybrid N-glycans functioned like a dominant positive displaying increased interaction with gamma-catenin and vinculin compared with the endogenous E-cadherin. Collectively, our studies show that N-glycans, and complex oligosaccharides in particular, destabilize AJs by affecting their molecular organization.

PubMed Disclaimer

Similar articles

Cited by

Publication types