Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Jun;72(6):363-7.

Positron emission tomography imaging of regional lung function

Affiliations
  • PMID: 16682902
Free article
Review

Positron emission tomography imaging of regional lung function

G Musch et al. Minerva Anestesiol. 2006 Jun.
Free article

Abstract

Regional pulmonary perfusion and ventilation can be assessed by imaging, with positron emission tomography (PET), the pulmonary kinetics of [13N]nitrogen (13N2). Because of its low solubility in blood and tissues, 13N2 infused intravenously in saline solution evolves into the alveolar airspace at first pass, where it accumulates in proportion to regional perfusion during a short apnea. In contrast, infused 13N2 is not retained in non-aerated regions, which do not exchange gas. Robust estimates of regional perfusion and shunt are obtained by modeling the pulmonary kinetics of 13N2 infused as a bolus during a short apnea. Regional ventilation is measured by modeling the washout of 13N2 after breathing is resumed. Regional gas content and dead space ventilation can be measured with inhalation of 13N2. Application of this novel functional imaging technique can further the understanding of the pathophysiology of a variety of pulmonary processes. This review briefly describes the methodological aspects of PET imaging of regional perfusion and ventilation and then focuses on insights in the pathophysiology of acute lung injury and asthma that have been gained by imaging the pulmonary kinetics of 13N2 with PET.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources