Pseudo-messenger RNA: phantoms of the transcriptome
- PMID: 16683022
- PMCID: PMC1449882
- DOI: 10.1371/journal.pgen.0020023
Pseudo-messenger RNA: phantoms of the transcriptome
Abstract
The mammalian transcriptome harbours shadowy entities that resist classification and analysis. In analogy with pseudogenes, we define pseudo-messenger RNA to be RNA molecules that resemble protein-coding mRNA, but cannot encode full-length proteins owing to disruptions of the reading frame. Using a rigorous computational pipeline, which rules out sequencing errors, we identify 10,679 pseudo-messenger RNAs (approximately half of which are transposon-associated) among the 102,801 FANTOM3 mouse cDNAs: just over 10% of the FANTOM3 transcriptome. These comprise not only transcribed pseudogenes, but also disrupted splice variants of otherwise protein-coding genes. Some may encode truncated proteins, only a minority of which appear subject to nonsense-mediated decay. The presence of an excess of transcripts whose only disruptions are opal stop codons suggests that there are more selenoproteins than currently estimated. We also describe compensatory frameshifts, where a segment of the gene has changed frame but remains translatable. In summary, we survey a large class of non-standard but potentially functional transcripts that are likely to encode genetic information and effect biological processes in novel ways. Many of these transcripts do not correspond cleanly to any identifiable object in the genome, implying fundamental limits to the goal of annotating all functional elements at the genome sequence level.
Conflict of interest statement
Competing interests. The authors have declared that no competing interests exist.
Figures







Similar articles
-
Assessing the genomic evidence for conserved transcribed pseudogenes under selection.BMC Genomics. 2009 Sep 15;10:435. doi: 10.1186/1471-2164-10-435. BMC Genomics. 2009. PMID: 19754956 Free PMC article.
-
Unit-length line-1 transcripts in human teratocarcinoma cells.Mol Cell Biol. 1988 Apr;8(4):1385-97. doi: 10.1128/mcb.8.4.1385-1397.1988. Mol Cell Biol. 1988. PMID: 2454389 Free PMC article.
-
Comprehensive Detection of Pseudogenes Transcribed by Readthrough.Methods Mol Biol. 2021;2324:85-102. doi: 10.1007/978-1-0716-1503-4_6. Methods Mol Biol. 2021. PMID: 34165710
-
Retroposition of processed pseudogenes: the impact of RNA stability and translational control.Trends Genet. 2006 Feb;22(2):69-73. doi: 10.1016/j.tig.2005.11.005. Epub 2005 Dec 13. Trends Genet. 2006. PMID: 16356584 Free PMC article. Review.
-
Pseudogenes: pseudo-functional or key regulators in health and disease?RNA. 2011 May;17(5):792-8. doi: 10.1261/rna.2658311. Epub 2011 Mar 11. RNA. 2011. PMID: 21398401 Free PMC article. Review.
Cited by
-
Paradigm shifts in genomics through the FANTOM projects.Mamm Genome. 2015 Oct;26(9-10):391-402. doi: 10.1007/s00335-015-9593-8. Epub 2015 Aug 8. Mamm Genome. 2015. PMID: 26253466 Free PMC article.
-
Evolutionary and expression signatures of pseudogenes in Arabidopsis and rice.Plant Physiol. 2009 Sep;151(1):3-15. doi: 10.1104/pp.109.140632. Epub 2009 Jul 29. Plant Physiol. 2009. PMID: 19641029 Free PMC article.
-
Systematic clustering of transcription start site landscapes.PLoS One. 2011;6(8):e23409. doi: 10.1371/journal.pone.0023409. Epub 2011 Aug 24. PLoS One. 2011. PMID: 21887249 Free PMC article.
-
Nested insertions and accumulation of indels are negatively correlated with abundance of mutator-like transposable elements in maize and rice.PLoS One. 2014 Jan 27;9(1):e87069. doi: 10.1371/journal.pone.0087069. eCollection 2014. PLoS One. 2014. PMID: 24475224 Free PMC article.
-
Allele-specific gene expression is widespread across the genome and biological processes.PLoS One. 2009;4(1):e4150. doi: 10.1371/journal.pone.0004150. Epub 2009 Jan 7. PLoS One. 2009. PMID: 19127300 Free PMC article.
References
-
- Cheng J, Kapranov P, Drenkow J, Dike S, Brubaker S, et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science. 2005;308:1149–1154. - PubMed
-
- Frith MC, Pheasant M, Mattick JS. Genomics: The amazing complexity of the human transcriptome. Eur J Hum Genet. 2005;13:894–897. - PubMed
-
- Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, et al. The transcriptional landscape of the mammalian genome. Science. 2005;309:1559–1563. - PubMed
-
- Mighell AJ, Smith NR, Robinson PA, Markham AF. Vertebrate pseudogenes. FEBS Lett. 2000;468:109–114. - PubMed
-
- Balakirev ES, Ayala FJ. Pseudogenes: Are they “junk” or functional DNA? Annu Rev Genet. 2003;37:123–151. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources