Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991;1(1):47-53.
doi: 10.1016/0960-8966(91)90042-q.

Altered sodium channel behaviour causes myotonia in dominantly inherited myotonia congenita

Affiliations

Altered sodium channel behaviour causes myotonia in dominantly inherited myotonia congenita

P A Iaizzo et al. Neuromuscul Disord. 1991.

Abstract

The cause of increased excitability in autosomal dominant myotonia congenita (MyC) was studied in resealed greater than 3-cm long segments of muscle fibres from eight patients. Three hours after biopsy only about 50% of the fibre segments had regained a normal resting potential. This differs from our experiences with normal muscle or other disorders of myotonia (e.g. recessive generalized myotonia) where nearly all cut fibres reseal and repolarize during this time. When the depolarized MyC fibre segments were placed in a solution containing 1 microM tetrodotoxin (TTX) they repolarized to -80 to -90 mV. In fibre segments with normal resting potential, in the absence of TTX, spontaneous myotonic runs were recorded intracellularly, occasionally with double spikes. For only one of the eight patients, the Cl- conductance was reduced (50% of the total membrane conductance vs the usual 75%), for the rest of the patients the steady-state current-voltage relationship was normal. Sodium currents through single membrane channels were recorded with a patch clamp. For every patient re-openings of the Na+ channels were observed throughout 10-ms depolarizing pulses. These are very uncommon in normal muscle. At potentials positive to the resting potential, the duration of the re-openings increased, but the current amplitude was the same. It is concluded that in myotonia congenita re-openings of Na+ channels are the major cause of hyperexcitability and that Cl- conductance is normal. If it is reduced in rare cases, it may potentiate the myotonia.

PubMed Disclaimer

Similar articles

Cited by

Publication types