Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun;259(1):47-52.
doi: 10.1111/j.1574-6968.2006.00245.x.

Formation of water-soluble metal cyanide complexes from solid minerals by Pseudomonas plecoglossicida

Affiliations
Free article

Formation of water-soluble metal cyanide complexes from solid minerals by Pseudomonas plecoglossicida

Mohammad A Faramarzi et al. FEMS Microbiol Lett. 2006 Jun.
Free article

Abstract

A few Pseudomonas species are able to form hydrocyanic acid (HCN), particularly when grown under glycine-rich conditions. In the presence of metals, cyanide can form water-soluble metal complexes of high chemical stability. We studied the possibility to mobilize metals as cyanide complexes from solid minerals using HCN-forming microorganisms. Pseudomonas plecoglossicida was cultivated in the presence of copper- and nickel-containing solid minerals. On powdered elemental nickel, fast HCN generation within the first 12 h of incubation was observed and water-soluble tetracyanaonickelate was formed. Cuprite, tenorite, chrysocolla, malachite, bornite, turquoise, millerite, pentlandite as well as shredded electronic scrap was also subjected to a biological treatment. Maximum concentrations of cyanide-complexed copper corresponded to a solubilization of 42% and 27% when P. plecoglossicida was grown in the presence of cuprite or tenorite, respectively. Crystal system, metal oxidation state and mineral hydrophobicity might have a significant influence on metal mobilization. However, it was not possible to allocate metal mobilization to a single mineral property. Cyanide-complexed gold was detected during growth on manually cut circuit boards. Maximum dicyanoaurate concentration corresponded to a 68.5% dissolution of the total gold added. These findings represent a novel type of microbial mobilization of nickel and copper from solid minerals based on the ability of certain microbes to form HCN.

PubMed Disclaimer

Similar articles

Cited by

Publication types