Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005;8(Pt 1):778-85.
doi: 10.1007/11566465_96.

A boundary element-based approach to analysis of LV deformation

Affiliations

A boundary element-based approach to analysis of LV deformation

Ping Yan et al. Med Image Comput Comput Assist Interv. 2005.

Abstract

Quantification of left ventricular (LV) deformation from 3D image sequences (4D data) is important for the assessment of myocardial viability, which can have important clinical implications. To date, feature information from either Magnetic Resonance, computed tomographic or echocardiographic image data has been assembled with the help of different interpolative models to estimate LV deformation. These models typically are designed to be computationally efficient (e.g. regularizing strategies using B-splines) or more physically realistic (e.g. finite element approximations to biomechanical models), but rarely incorporate both notions. In this paper, we combine an approach to the extraction and matching of image-derived point features based on local shape properties with a boundary element model. This overall scheme is intended to be both computationally efficient and physically realistic. In order to illustrate this, we compute strains using our method on canine 4D MR image sequences and compare the results to those found from a B-spline-based method (termed extended free-form deformation (EFFD)) and a method based on finite elements (FEM). All results are compared to displacements found using implanted markers, taken to be agold standard.

PubMed Disclaimer

Publication types

LinkOut - more resources