Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 May:17 Suppl 1:S151-S157.
doi: 10.1111/j.1540-8167.2006.00398.x.

Sodium channel variants in heart disease: expanding horizons

Affiliations
Review

Sodium channel variants in heart disease: expanding horizons

Hanno L Tan. J Cardiovasc Electrophysiol. 2006 May.

Abstract

Inherited arrhythmia syndromes have advanced our understanding of cardiac sodium (Na) channel function in health and disease. Long QT syndrome (LQT3) is consistently caused by increased net Na current secondary to inactivation defects, which give rise to persistent Na current. Conversely, various gating changes that ultimately result in reduced Na current may elicit Brugada syndrome, conduction disease, atrial standstill, and sinus node disease. Emerging insights now also link these gating defects to enhanced arrhythmia susceptibility in common, acquired, disease. For instance, action potential prolongation in congestive heart failure may be explained by increased persistent Na current. Of note, recent studies have also linked Na current reduction to structural cardiac defects, notably cardiac fibrosis, dilated cardiomyopathy and, possibly, arrhythmogenic right ventricular cardiomyopathy. These structural changes may also be conducive to (reentrant) arrhythmias. Clearly, these observations highlight the cardiac Na channel as an interesting target for novel therapy strategies.

PubMed Disclaimer

Publication types

LinkOut - more resources