The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
- PMID: 16686963
- PMCID: PMC1779511
- DOI: 10.1186/gb-2006-7-5-r36
The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
Abstract
We present a method (the Inferelator) for deriving genome-wide transcriptional regulatory interactions, and apply the method to predict a large portion of the regulatory network of the archaeon Halobacterium NRC-1. The Inferelator uses regression and variable selection to identify transcriptional influences on genes based on the integration of genome annotation and expression data. The learned network successfully predicted Halobacterium's global expression under novel perturbations with predictive power similar to that seen over training data. Several specific regulatory predictions were experimentally tested and verified.
Figures








Similar articles
-
Comprehensive de novo structure prediction in a systems-biology context for the archaea Halobacterium sp. NRC-1.Genome Biol. 2004;5(8):R52. doi: 10.1186/gb-2004-5-8-r52. Epub 2004 Jul 12. Genome Biol. 2004. PMID: 15287974 Free PMC article.
-
Learning global models of transcriptional regulatory networks from data.Methods Mol Biol. 2009;541:181. doi: 10.1007/978-1-59745-243-4_9. Methods Mol Biol. 2009. PMID: 19381524 Review.
-
Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks.BMC Bioinformatics. 2006 Jun 2;7:280. doi: 10.1186/1471-2105-7-280. BMC Bioinformatics. 2006. PMID: 16749936 Free PMC article.
-
Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC-1.Genome Res. 2004 Jun;14(6):1025-35. doi: 10.1101/gr.1993504. Epub 2004 May 12. Genome Res. 2004. PMID: 15140832 Free PMC article.
-
Transcriptional Regulation in Archaea: From Individual Genes to Global Regulatory Networks.Annu Rev Genet. 2017 Nov 27;51:143-170. doi: 10.1146/annurev-genet-120116-023413. Annu Rev Genet. 2017. PMID: 29178818 Review.
Cited by
-
An integrated approach to reconstructing genome-scale transcriptional regulatory networks.PLoS Comput Biol. 2015 Feb 27;11(2):e1004103. doi: 10.1371/journal.pcbi.1004103. eCollection 2015 Feb. PLoS Comput Biol. 2015. PMID: 25723545 Free PMC article.
-
Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks.Bioinformatics. 2013 Apr 15;29(8):1060-7. doi: 10.1093/bioinformatics/btt099. Epub 2013 Mar 21. Bioinformatics. 2013. PMID: 23525069 Free PMC article.
-
Reverse Engineering of Genome-wide Gene Regulatory Networks from Gene Expression Data.Curr Genomics. 2015 Feb;16(1):3-22. doi: 10.2174/1389202915666141110210634. Curr Genomics. 2015. PMID: 25937810 Free PMC article.
-
The Local Edge Machine: inference of dynamic models of gene regulation.Genome Biol. 2016 Oct 19;17(1):214. doi: 10.1186/s13059-016-1076-z. Genome Biol. 2016. PMID: 27760556 Free PMC article.
-
Network inference via adaptive optimal design.BMC Res Notes. 2012 Sep 24;5:518. doi: 10.1186/1756-0500-5-518. BMC Res Notes. 2012. PMID: 22999252 Free PMC article.
References
-
- Herrgard MJ, Covert MW, Palsson BO. Reconstruction of microbial transcriptional regulatory networks. Curr Opin Biotechnol. 2004;15:70–77. - PubMed
-
- De Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol. 2002;9:67–103. - PubMed
-
- Alm E, Arkin AP. Biological networks. Curr Opin Struct Biol. 2003;13:193–202. - PubMed
-
- Hashimoto RF, Kim S, Shmulevich I, Zhang W, Bittner ML, Dougherty ER. Growing genetic regulatory networks from seed genes. Bioinformatics. 2004;20:1241–1247. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources