Identifying spots in microarray images
- PMID: 16689211
- DOI: 10.1109/tnb.2002.806936
Identifying spots in microarray images
Abstract
Microarray technology has provided a way to quantitate the simultaneous expression of a large number of genes. This approach is dependent on reproducible, accurate identification and quantitation of spot intensities. In this paper, clustering-based image segmentation is described to extract the target intensity of the microarray spots. While the technique is generic, its effectiveness on extracting spot intensities on arrays obtained from a two-color (Cy3/Cy5) experiment is discussed. The approximate boundaries of the spots are determined initially by manual alignment of rectangular grids. The pixel intensities of the image (I) inside a grid, is mapped onto a one-dimensional vector (v). The k-means clustering technique is applied to generate a binary partition of v. The median value of the pixel intensities inside each of the clusters for a given spot determines its foreground and the local background intensity. The difference in the median value of the foreground and the background intensity is the desired target intensity of the spot. The results are compared against those obtained using a region growing approach.
Similar articles
-
Intensity-based segmentation of microarray images.IEEE Trans Med Imaging. 2003 Jul;22(7):882-9. doi: 10.1109/TMI.2003.815063. IEEE Trans Med Imaging. 2003. PMID: 12906242
-
Clustering-based spot segmentation of cDNA microarray images.Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:1828-31. doi: 10.1109/IEMBS.2010.5626430. Annu Int Conf IEEE Eng Med Biol Soc. 2010. PMID: 21096143
-
Application of wavelet modulus maxima in microarray spots recognition.IEEE Trans Nanobioscience. 2003 Dec;2(4):190-2. doi: 10.1109/tnb.2003.816230. IEEE Trans Nanobioscience. 2003. PMID: 15376908
-
Spot detection and image segmentation in DNA microarray data.Appl Bioinformatics. 2005;4(1):1-11. doi: 10.2165/00822942-200504010-00001. Appl Bioinformatics. 2005. PMID: 16000008 Review.
-
[Progress in a research on biochip image analysis].Zhongguo Yi Liao Qi Xie Za Zhi. 2007 Mar;31(2):108-11. Zhongguo Yi Liao Qi Xie Za Zhi. 2007. PMID: 17552173 Review. Chinese.
Cited by
-
Automated segmentation and classification of high throughput yeast assay spots.IEEE Trans Med Imaging. 2007 Oct;26(10):1401-11. doi: 10.1109/TMI.2007.900694. IEEE Trans Med Imaging. 2007. PMID: 17948730 Free PMC article.
-
Estimating gene signals from noisy microarray images.IEEE Trans Nanobioscience. 2008 Jun;7(2):142-53. doi: 10.1109/TNB.2008.2000745. IEEE Trans Nanobioscience. 2008. PMID: 18556262 Free PMC article.
-
Line-monitoring, hyperspectral fluorescence setup for simultaneous multi-analyte biosensing.Sensors (Basel). 2011;11(11):10038-47. doi: 10.3390/s111110038. Epub 2011 Oct 25. Sensors (Basel). 2011. PMID: 22346627 Free PMC article.
-
Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm.J Med Signals Sens. 2015 Jul-Sep;5(3):182-91. doi: 10.4103/2228-7477.161494. J Med Signals Sens. 2015. PMID: 26284175 Free PMC article.
-
Two-dimensional singlet oxygen imaging with its near-infrared luminescence during photosensitization.J Biomed Opt. 2011 Jan-Feb;16(1):016003. doi: 10.1117/1.3528593. J Biomed Opt. 2011. PMID: 21280909 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources