Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun 16;359(4):961-72.
doi: 10.1016/j.jmb.2006.04.009. Epub 2006 Apr 21.

Calcium-dependent tetramer formation of S100A8 and S100A9 is essential for biological activity

Affiliations

Calcium-dependent tetramer formation of S100A8 and S100A9 is essential for biological activity

Nadja Leukert et al. J Mol Biol. .

Abstract

S100 proteins comprise the largest family of calcium-binding proteins. Members of this family usually form homo- or heterodimers, which may associate to higher-order oligomers in a calcium-dependent manner. The heterodimers of S100A8 and S100A9 represent the major calcium-binding proteins in phagocytes. Both proteins regulate migration of these cells via modulation of tubulin polymerization. Calcium binding induces formation of (S100A8/S100A9)2 tetramers. The functional relevance of these higher-order oligomers of S100 proteins, however, is not yet clear. To investigate the importance of higher-order oligomerization for S100 proteins, we created a set of mutations within S100A9 (N69A, E78A, N69A+E78A) destroying the high-affinity C-terminal calcium-binding site (EF-hand II). Mutations in EF-hand II did not interfere with formation of the S100A8/S100A9 heterodimer as demonstrated by yeast two-hybrid experiments and pull-down assays. In contrast, mass spectrometric analysis and density gradient centrifugation revealed that calcium-induced association of (S100A8/S100A9)2 tetramers was strictly dependent on a functional EF-hand II in S100A9. Failure of tetramer formation was associated with a lack of functional activity of S100A8/S100A9 complexes in promoting the formation of microtubules. Thus, our data demonstrate that calcium-dependent formation of (S100A8/S100A9)2 tetramers is an essential prerequisite for biological function. This is the first report showing a functional relevance of calcium-induced higher-order oligomerization in the S100 family.

PubMed Disclaimer

Publication types

LinkOut - more resources