Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul 14;281(28):19156-71.
doi: 10.1074/jbc.M602024200. Epub 2006 May 11.

Regulation of neuronal nitric-oxide synthase activity by somatostatin analogs following SST5 somatostatin receptor activation

Affiliations
Free article

Regulation of neuronal nitric-oxide synthase activity by somatostatin analogs following SST5 somatostatin receptor activation

Pierre Cordelier et al. J Biol Chem. .
Free article

Abstract

Somatostatin receptor SST5 is an inhibitory G protein-coupled receptor that exerts a strong cytostatic effect on various cell types. We reported previously that the SST5 anti-proliferative effect results in the inhibition of mitogen-induced increases in intracellular cGMP levels and MAPK activity. This study was conducted to define the early molecular events accountable for the SST5-mediated anti-proliferative effect. Here, we demonstrate that, in Chinese hamster ovary cells expressing SST5 (CHO/SST5 cells), somatostatin inhibited cell proliferation induced by nitric oxide donors and overexpression of the neuronal nitric-oxide synthase (nNOS) protein isoform. Accordingly, nNOS activity and dimerization were strongly inhibited following SST5 activation by the somatostatin analog RC-160. In CHO/SST5 cells, nNOS was dynamically recruited by the SST5 receptor and phosphorylated at tyrosyl residues following RC-160 treatment. RC-160 induced SST5-p60(src) kinase complex formation and subsequent p60(src) kinase activation. Coexpression of an inactive p60(src) kinase mutant with SST5 blocked RC-160-induced nNOS phosphorylation and inactivation and prevented the SST5-mediated anti-proliferative effect. In CHO/SST5 cells, p60(src) kinase associated with nNOS to induce its inactivation by phosphorylation at tyrosyl residues following RC-160 treatment. Using recombinant proteins, we demonstrated that such phosphorylation prevented nNOS homodimerization. Next, surface plasmon resonance and mutation analysis revealed that p60(src) directly associated with nNOS phosphorylated Tyr604. SST5-mediated inhibition of nNOS activity was demonstrated to be essential to the RC-160 anti-proliferative effect on pancreatic endocrine tumor-derived cells. We therefore identified nNOS as a new p60(src) kinase substrate essential for SST5-mediated anti-proliferative action.

PubMed Disclaimer

LinkOut - more resources